SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED

The  article  presents  an  algorithm  for  synthesizing  optimal  program  controls  for  nonlinear  control-affine  objects  by  the criterion  of  maximum  speedy.  The  mathematical  apparatus  used  is  the  linearization  of  Newton-Kantorovich  and  the apparatus of matrix operators. The stru...

Full description

Bibliographic Details
Main Authors: Yu. P. Korniushin, D. V. Melnikov, A. V. Mazin
Format: Article
Language:English
Published: CRI «Electronics» 2017-11-01
Series:Радиопромышленность
Subjects:
Online Access:https://www.radioprom.org/jour/article/view/255
id doaj-3647a6526fc4407089ec632fa819e061
record_format Article
spelling doaj-3647a6526fc4407089ec632fa819e0612021-07-28T13:52:35ZengCRI «Electronics»Радиопромышленность2413-95992541-870X2017-11-01274626710.21778/2413-9599-2017-4-62-67247SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEEDYu. P. Korniushin0D. V. Melnikov1A. V. Mazin2Bauman Moscow State Technical University, Kaluga branchBauman Moscow State Technical University, Kaluga branchBauman Moscow State Technical University, Kaluga branchThe  article  presents  an  algorithm  for  synthesizing  optimal  program  controls  for  nonlinear  control-affine  objects  by  the criterion  of  maximum  speedy.  The  mathematical  apparatus  used  is  the  linearization  of  Newton-Kantorovich  and  the apparatus of matrix operators. The structure of the algorithm includes the following steps at the first stage, the linearization of the nonlinear mathematical model of the object is performed by the Newton-Kantorovich method; at the second stage, we carry out the reduction of the synthesis problem by the criterion of minimum time in the presence of constraints on the control energy to the synthesis problem by the energy minimum criterion for finding the (optimal) minimum value of the sought  time;  at  the  third  stage  we  perform  parametrization  of  the  mathematical  model  of  the  control  object  and  a  new quality criterion using the apparatus of matrix operators with the subsequent construction of the optimal control. The fourth final  stage  consists  in  realizing  the  iterative  process  prescribed  by  the  Newton-Kantorovich  method-there  is  an  optimal (minimal) time value. The synthesis algorithm is illustrated by an example.https://www.radioprom.org/jour/article/view/255synthesis optimal speedy nonlinear matrix operator
collection DOAJ
language English
format Article
sources DOAJ
author Yu. P. Korniushin
D. V. Melnikov
A. V. Mazin
spellingShingle Yu. P. Korniushin
D. V. Melnikov
A. V. Mazin
SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
Радиопромышленность
synthesis
 optimal
 speedy
 nonlinear
 matrix
 operator
author_facet Yu. P. Korniushin
D. V. Melnikov
A. V. Mazin
author_sort Yu. P. Korniushin
title SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
title_short SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
title_full SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
title_fullStr SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
title_full_unstemmed SYNTHESIS OF OPTIMAL CONTROLS FOR NONLINEAR OBJECTS BY THE CRITERION OF MAXIMUM SPEED
title_sort synthesis of optimal controls for nonlinear objects by the criterion of maximum speed
publisher CRI «Electronics»
series Радиопромышленность
issn 2413-9599
2541-870X
publishDate 2017-11-01
description The  article  presents  an  algorithm  for  synthesizing  optimal  program  controls  for  nonlinear  control-affine  objects  by  the criterion  of  maximum  speedy.  The  mathematical  apparatus  used  is  the  linearization  of  Newton-Kantorovich  and  the apparatus of matrix operators. The structure of the algorithm includes the following steps at the first stage, the linearization of the nonlinear mathematical model of the object is performed by the Newton-Kantorovich method; at the second stage, we carry out the reduction of the synthesis problem by the criterion of minimum time in the presence of constraints on the control energy to the synthesis problem by the energy minimum criterion for finding the (optimal) minimum value of the sought  time;  at  the  third  stage  we  perform  parametrization  of  the  mathematical  model  of  the  control  object  and  a  new quality criterion using the apparatus of matrix operators with the subsequent construction of the optimal control. The fourth final  stage  consists  in  realizing  the  iterative  process  prescribed  by  the  Newton-Kantorovich  method-there  is  an  optimal (minimal) time value. The synthesis algorithm is illustrated by an example.
topic synthesis
 optimal
 speedy
 nonlinear
 matrix
 operator
url https://www.radioprom.org/jour/article/view/255
work_keys_str_mv AT yupkorniushin synthesisofoptimalcontrolsfornonlinearobjectsbythecriterionofmaximumspeed
AT dvmelnikov synthesisofoptimalcontrolsfornonlinearobjectsbythecriterionofmaximumspeed
AT avmazin synthesisofoptimalcontrolsfornonlinearobjectsbythecriterionofmaximumspeed
_version_ 1721270489882558464