Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy

Since 1988, the International Agency for Research on Cancer (IARC) has classified radon among the compounds for which there is scientific evidence of carcinogenicity for humans (group 1). The World Health Organization (WHO) recommends a reference radon level between 100 and 300 Bq/m3 for homes. The...

Full description

Bibliographic Details
Main Authors: Luigi Vimercati, Fulvio Fucilli, Domenica Cavone, Luigi De Maria, Francesco Birtolo, Giovanni Maria Ferri, Leonardo Soleo, Piero Lovreglio
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:International Journal of Environmental Research and Public Health
Subjects:
Online Access:http://www.mdpi.com/1660-4601/15/4/694
Description
Summary:Since 1988, the International Agency for Research on Cancer (IARC) has classified radon among the compounds for which there is scientific evidence of carcinogenicity for humans (group 1). The World Health Organization (WHO) recommends a reference radon level between 100 and 300 Bq/m3 for homes. The objective of this study is to measure the radon concentrations in 401 workplaces, different from the patient rooms, in 28 different buildings of the university hospital in Bari (Apulia region, Southern Italy) to evaluate the exposure of health care workers. Radon environmental sampling is performed over two consecutive six-month periods via the use of passive dosimeters of the CR-39 type. We find an average annual radon concentration expressed as median value of 48.0 Bq/m3 (range 6.5–388.0 Bq/m3) with a significant difference between the two six-month periods (median value: February/July 41.0 Bq/m3 vs. August/January 55.0 Bq/m3). An average concentration of radon lower than the WHO reference level (100 Bq/m3) is detected in 76.1% of monitored environments, while higher than 300 Bq/m3 only in the 0.9%. Most workplaces report radon concentrations within the WHO reference level, therefore, the risk to workers’ health deriving from occupational exposure to radon can be considered to be low. Nevertheless, the goal is to achieve near-zero exposures to protect workers’ health.
ISSN:1660-4601