General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems

In this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to desc...

Full description

Bibliographic Details
Main Author: Gao Feng
Format: Article
Language:English
Published: VINCA Institute of Nuclear Sciences 2017-01-01
Series:Thermal Science
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/0354-9836/2017/0354-98361700194G.pdf
id doaj-362db77f042a4b3e98e7ed26031552a9
record_format Article
spelling doaj-362db77f042a4b3e98e7ed26031552a92021-01-02T03:37:08ZengVINCA Institute of Nuclear SciencesThermal Science0354-98362334-71632017-01-0121suppl. 1111810.2298/TSCI170310194G0354-98361700194GGeneral fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problemsGao Feng0China University of Mining and Technology, State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou, China + China University of Mining and Technology, School of Mechanics and Civil Engineering, Xuzhou, ChinaIn this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to describe complex phenomena of the heat transfer problems.http://www.doiserbia.nb.rs/img/doi/0354-9836/2017/0354-98361700194G.pdfheat transferanomalous diffusiongeneral fractional calculusFourier transforms
collection DOAJ
language English
format Article
sources DOAJ
author Gao Feng
spellingShingle Gao Feng
General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
Thermal Science
heat transfer
anomalous diffusion
general fractional calculus
Fourier transforms
author_facet Gao Feng
author_sort Gao Feng
title General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
title_short General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
title_full General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
title_fullStr General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
title_full_unstemmed General fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
title_sort general fractional calculus in non-singular power-law kernel applied to model anomalous diffusion phenomena in heat transfer problems
publisher VINCA Institute of Nuclear Sciences
series Thermal Science
issn 0354-9836
2334-7163
publishDate 2017-01-01
description In this paper we address the general fractional calculus of Liouville-Weyl and Liouville-Caputo general fractional derivative types with non-singular power-law kernel for the first time. The Fourier transforms and the anomalous diffusions are discussed in detail. The formulations are adopted to describe complex phenomena of the heat transfer problems.
topic heat transfer
anomalous diffusion
general fractional calculus
Fourier transforms
url http://www.doiserbia.nb.rs/img/doi/0354-9836/2017/0354-98361700194G.pdf
work_keys_str_mv AT gaofeng generalfractionalcalculusinnonsingularpowerlawkernelappliedtomodelanomalousdiffusionphenomenainheattransferproblems
_version_ 1724360988776464384