Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization
A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove t...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/758287 |
id |
doaj-361c964c45044025ad602233b7e8a766 |
---|---|
record_format |
Article |
spelling |
doaj-361c964c45044025ad602233b7e8a7662020-11-24T22:38:03ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/758287758287Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained OptimizationJinkui Liu0Youyi Jiang1College of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404000, ChinaCollege of Mathematics and Statistics, Chongqing Three Gorges University, Wanzhou 404000, ChinaA new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995) in contrast to the famous CD method, FR method, and PRP method.http://dx.doi.org/10.1155/2012/758287 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jinkui Liu Youyi Jiang |
spellingShingle |
Jinkui Liu Youyi Jiang Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization Abstract and Applied Analysis |
author_facet |
Jinkui Liu Youyi Jiang |
author_sort |
Jinkui Liu |
title |
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization |
title_short |
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization |
title_full |
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization |
title_fullStr |
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization |
title_full_unstemmed |
Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization |
title_sort |
global convergence of a spectral conjugate gradient method for unconstrained optimization |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2012-01-01 |
description |
A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995) in contrast to the famous CD method, FR method, and PRP method. |
url |
http://dx.doi.org/10.1155/2012/758287 |
work_keys_str_mv |
AT jinkuiliu globalconvergenceofaspectralconjugategradientmethodforunconstrainedoptimization AT youyijiang globalconvergenceofaspectralconjugategradientmethodforunconstrainedoptimization |
_version_ |
1725714833692688384 |