Summary: | A thermophilic Bacillus strain was isolated from excess sludge in the present study. The 16S rDNA analysis indicated that this strain was a Bacillus sp. and has not been reported previously (named Bacillus sp. Hnu). The aim of this paper was to investigate the enhanced efficiency of excess sludge hydrolysis by the addition of thermophilic Bacillus sp. Hnu under different oxygen supply conditions. The results indicated that higher temperature and more oxygen supply was advantageous to the volatile suspended solid removal ratio with the same effect to that of protease activity. The maximum volatile suspended solid removal ratio was achieved at 21.5 %, 42.5 %, and 54.4 % after 108 h digestion at pH 6.9 and 60°C and increased by 17.2 %, 38 %, and 45.4 % under anaerobic, microaerobic, and aerobic conditions compared with the control test, respectively. The hydrolysis rate constants for the anaerobic, microaerobic, and aerobic conditions were 3, 4.8, and 7 times (40°C) and 3.5, 9.8, and 11.8 times (50°C) and 2.7, 7.2, and 10.3 times (60°C). Hydrolysis performance indicated that the Bacillus sp. Hnu could accelerate the hydrolysis rate. The kinetic study showed that the hydrolysis of sludge with Bacillus sp. Hnu and the control test followed the first-order kinetics except at 60°C.
|