Modal Proportion Analysis in Antenna Characteristic Mode Theory
The characteristic mode theory (CMT) can provide physically intuitive guidance for the analysis and design of antenna structures. In CMT applications, the antenna current distribution is decomposed into the superposition of multiple characteristic modes, and the proportion of each current mode is ch...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2019/7069230 |
Summary: | The characteristic mode theory (CMT) can provide physically intuitive guidance for the analysis and design of antenna structures. In CMT applications, the antenna current distribution is decomposed into the superposition of multiple characteristic modes, and the proportion of each current mode is characterized by the modal weighting coefficient (MWC). However, different characteristic currents themselves have different radiation efficiencies reflected by the eigenvalues. Therefore, from the perspective of the contribution to the radiation field, the modal proportion should be more accurately determined by the combination of the modal weighting coefficient and the mode current itself. Since the discrete mode currents calculated using the electromagnetic numerical method are distributed on the whole conductor surface, we can actually use the radiation field to quantify the modal proportion or estimate it using the far field in the maximum radiation direction. The numerical examples provided in the paper demonstrate that this modal proportion can effectively evaluate antenna performance. |
---|---|
ISSN: | 1687-5869 1687-5877 |