On the carrier of inertia

A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space h...

Full description

Bibliographic Details
Main Authors: Patrick Grahn, Arto Annila, Erkki Kolehmainen
Format: Article
Language:English
Published: AIP Publishing LLC 2018-03-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5020240
Description
Summary:A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism share the similar functional form because both are carried by the vacuum photons as paired and unpaired.
ISSN:2158-3226