Synergistic Effect of Polymorphs in Doped NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> Cathode Material for Improving Electrochemical Performances in Na-Batteries

Layered NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>, employed as cathode materials in sodium ion batteries, is attracting interest due to its high working potential and high-capacity values, thanks to the big sodium amount hosted in the lattice. Many issues ar...

Full description

Bibliographic Details
Main Authors: Francesco Leccardi, Davide Nodari, Daniele Spada, Marco Ambrosetti, Marcella Bini
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Electrochem
Subjects:
Online Access:https://www.mdpi.com/2673-3293/2/2/24
Description
Summary:Layered NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>, employed as cathode materials in sodium ion batteries, is attracting interest due to its high working potential and high-capacity values, thanks to the big sodium amount hosted in the lattice. Many issues are, however, related to their use, particularly, the complex phase transitions occurring during sodium intercalation/deintercalation, detrimental for the structure stability, and the possible Mn dissolution into the electrolyte. In this paper, the doping with Ti, V, and Cu ions (10% atoms with respect to Ni/Mn amount) was used to stabilize different polymorphs or mixtures of them with the aim to improve the capacity values and cells cyclability. The phases were identified and quantified by means of X-ray powder diffraction with Rietveld structural refinements. Complex voltammograms with broad peaks, due to multiple structural transitions, were disclosed for most of the samples. Ti-doped sample has, in general, the best performances with the highest capacity values (120 mAh/g at C/10), however, at higher currents (1C), Cu-substituted sample also has stable and comparable capacity values.
ISSN:2673-3293