Variable-Coefficient Exact Solutions for Nonlinear Differential Equations by a New Bernoulli Equation-Based Subequation Method
A new Bernoulli equation-based subequation method is proposed to establish variable-coefficient exact solutions for nonlinear differential equations. For illustrating the validity of this method, we apply it to the asymmetric (2 + 1)-dimensional NNV system and the Kaup-Kupershmidt equation. As a res...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/923408 |
Summary: | A new Bernoulli equation-based subequation method is proposed to establish variable-coefficient exact solutions for nonlinear differential equations. For illustrating the validity of this method, we apply it to the asymmetric (2 + 1)-dimensional NNV system and the Kaup-Kupershmidt equation. As a result, some new exact solutions with variable functions coefficients for them are successfully obtained. |
---|---|
ISSN: | 1024-123X 1563-5147 |