Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several geneti...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-08-01
|
Series: | Cells |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4409/10/8/2063 |
id |
doaj-35e4a1fc152542a1a80da84cb6ae2d33 |
---|---|
record_format |
Article |
spelling |
doaj-35e4a1fc152542a1a80da84cb6ae2d332021-08-26T13:37:33ZengMDPI AGCells2073-44092021-08-01102063206310.3390/cells10082063Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and DevelopmentSabina Domené0Paula A. Scaglia1Mariana L. Gutiérrez2Horacio M. Domené3Centro de Investigaciones Endocrinológicas ‘Dr César Bergadá’, (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires C1425EFD, ArgentinaCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’, (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires C1425EFD, ArgentinaCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’, (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires C1425EFD, ArgentinaCentro de Investigaciones Endocrinológicas ‘Dr César Bergadá’, (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez), Buenos Aires C1425EFD, ArgentinaHeritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.https://www.mdpi.com/2073-4409/10/8/2063bioinformaticsfunctional assaysgrowth and developmentGH-IGF axisshort staturenext-generation sequencing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sabina Domené Paula A. Scaglia Mariana L. Gutiérrez Horacio M. Domené |
spellingShingle |
Sabina Domené Paula A. Scaglia Mariana L. Gutiérrez Horacio M. Domené Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development Cells bioinformatics functional assays growth and development GH-IGF axis short stature next-generation sequencing |
author_facet |
Sabina Domené Paula A. Scaglia Mariana L. Gutiérrez Horacio M. Domené |
author_sort |
Sabina Domené |
title |
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development |
title_short |
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development |
title_full |
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development |
title_fullStr |
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development |
title_full_unstemmed |
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development |
title_sort |
applying bioinformatic platforms, in vitro, and in vivo functional assays in the characterization of genetic variants in the gh/igf pathway affecting growth and development |
publisher |
MDPI AG |
series |
Cells |
issn |
2073-4409 |
publishDate |
2021-08-01 |
description |
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease. |
topic |
bioinformatics functional assays growth and development GH-IGF axis short stature next-generation sequencing |
url |
https://www.mdpi.com/2073-4409/10/8/2063 |
work_keys_str_mv |
AT sabinadomene applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment AT paulaascaglia applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment AT marianalgutierrez applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment AT horaciomdomene applyingbioinformaticplatformsinvitroandinvivofunctionalassaysinthecharacterizationofgeneticvariantsintheghigfpathwayaffectinggrowthanddevelopment |
_version_ |
1721194234286964736 |