Strongly nonlinear problem of infinite order with $L^1$ data

In this paper, we prove the existence of solutions for the strongly nonlinear equation of the type $$ Au+g(x,u)=f $$ where $A$ is an elliptic operator of infinite order from a functional space of Sobolev type to its dual. $g(x,s)$ is a lower order term satisfying essentially a sign condition on $s$...

Full description

Bibliographic Details
Main Authors: A. Benkirane, M. Chrif, S. El Manouni
Format: Article
Language:English
Published: University of Szeged 2009-03-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=368
id doaj-35d06efbea9c4ceca713c514fd5b712c
record_format Article
spelling doaj-35d06efbea9c4ceca713c514fd5b712c2021-07-14T07:21:20ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752009-03-0120091511210.14232/ejqtde.2009.1.15368Strongly nonlinear problem of infinite order with $L^1$ dataA. Benkirane0M. Chrif1S. El Manouni2Department of Mathematics, University Sidi Mohamed Ben Abdellah, Fez, MoroccoDepartment of Mathematics, Faculty of Sciences of Fez, Fez, MoroccoAl-Imam University, Faculty of Sciences, Riyadh, KSAIn this paper, we prove the existence of solutions for the strongly nonlinear equation of the type $$ Au+g(x,u)=f $$ where $A$ is an elliptic operator of infinite order from a functional space of Sobolev type to its dual. $g(x,s)$ is a lower order term satisfying essentially a sign condition on $s$ and the second term $f$ belongs to $L^1(\Omega).$http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=368
collection DOAJ
language English
format Article
sources DOAJ
author A. Benkirane
M. Chrif
S. El Manouni
spellingShingle A. Benkirane
M. Chrif
S. El Manouni
Strongly nonlinear problem of infinite order with $L^1$ data
Electronic Journal of Qualitative Theory of Differential Equations
author_facet A. Benkirane
M. Chrif
S. El Manouni
author_sort A. Benkirane
title Strongly nonlinear problem of infinite order with $L^1$ data
title_short Strongly nonlinear problem of infinite order with $L^1$ data
title_full Strongly nonlinear problem of infinite order with $L^1$ data
title_fullStr Strongly nonlinear problem of infinite order with $L^1$ data
title_full_unstemmed Strongly nonlinear problem of infinite order with $L^1$ data
title_sort strongly nonlinear problem of infinite order with $l^1$ data
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2009-03-01
description In this paper, we prove the existence of solutions for the strongly nonlinear equation of the type $$ Au+g(x,u)=f $$ where $A$ is an elliptic operator of infinite order from a functional space of Sobolev type to its dual. $g(x,s)$ is a lower order term satisfying essentially a sign condition on $s$ and the second term $f$ belongs to $L^1(\Omega).$
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=368
work_keys_str_mv AT abenkirane stronglynonlinearproblemofinfiniteorderwithl1data
AT mchrif stronglynonlinearproblemofinfiniteorderwithl1data
AT selmanouni stronglynonlinearproblemofinfiniteorderwithl1data
_version_ 1721303803239596032