Facile synthesis of nanostructured Ni-Co/ZnO material: An efficient and inexpensive catalyst for Heck reactions under ligand-free conditions

A simple, efficient and economically viable method for the Heck reaction has been accomplished in the absence of phosphine ligand. The Heck reaction was performed using nanostructured Ni-Co/ZnO material as a heterogeneous catalyst in a DMF/H2O solvent system and in the presence of K2CO3, at 120 °C....

Full description

Bibliographic Details
Main Authors: Digambar B. Bankar, Kaluram G. Kanade, Ranjit R. Hawaldar, Sudhir S. Arbuj, Manish D. Shinde, Shrikant P. Takle, Dinesh P. Amalnerkar, Santosh T. Shinde
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220304184
Description
Summary:A simple, efficient and economically viable method for the Heck reaction has been accomplished in the absence of phosphine ligand. The Heck reaction was performed using nanostructured Ni-Co/ZnO material as a heterogeneous catalyst in a DMF/H2O solvent system and in the presence of K2CO3, at 120 °C. The Ni-Co/ZnO nanostructures were prepared by the facile reduction-impregnation method. The structural and morphological properties of Ni-Co/ZnO nanostructure were investigated using various physico-chemical characterization techniques. Structural studies displayed the formation of hexagonal (wurtzite) ZnO. Electron microscopy imaging showed the presence of agglomerated clusters of Ni-Co nanoparticles over the surfaces of elliptical, flower bud-like and irregularly shaped sub-micron sized particle bundles of ZnO. The elemental composition analysis (EDX) confirmed the loading of Ni and Co nanoparticles over the nanocrystalline ZnO. The surface chemical state analysis of Ni-Co/ZnO material validated that Ni nanostructure exists in Ni2+ and Ni3+ species, whereas, Co nanostructure exists in Co2+ and Co3+ species. UV–Vis diffuse reflectance spectroscopy displays red shift in the light absorption edge of Ni-Co/ZnO catalyst compared to pure ZnO. The as-prepared Ni-Co bimetallic supported ZnO nanostructure showed better catalytic activity and stability for the Heck reactions under phosphine ligand-free conditions. Ni-Co/ZnO catalyzed Heck reactions afforded the corresponding cross-coupled products with moderate to good yields (up to 92%). Ni-Co/ZnO catalyst could be reused for five successive runs without significant loss of catalytic activity.
ISSN:1878-5352