Summary: | We are concerned with the class of functions f ∈ C 1 ( [ a , b ] ; R ) , a , b ∈ R , a < b , such that c D a α f is convex or c D b α f is convex, where 0 < α < 1 , c D a α f is the left-side Liouville–Caputo fractional derivative of order α of f and c D b α f is the right-side Liouville–Caputo fractional derivative of order α of f. Some extensions of Dragomir–Agarwal inequality to this class of functions are obtained. A parallel development is made for the class of functions f ∈ C 1 ( [ a , b ] ; R ) such that c D a α f is concave or c D b α f is concave. Next, an application to special means of real numbers is provided.
|