Summary: | The objective of this study is to compare the reaction kinetics of copper leaching from chalcopyrite in acidic ferric sulfate media with (UAL) and without (non-UAL) ultrasound assistance. Four leaching parameters were evaluated and optimized. The parameter with the strongest effect was temperature, followed by ultrasonic power, the solid-to-liquid ratio (S/L), and acid concentration. Copper recovery showed an increase with rising temperatures in both systems. Ultrasonic power had a positive effect on copper leaching, but no significant difference was found among various power amplitudes. Copper extraction increased with decreasing S/L. At 0.1% S/L, the UAL leaching rate was double the non-UAL leaching rate. In both systems, acid concentration had little effect on copper extraction. Under optimized conditions, 20% amplitude power, 1% S/L, 0.5 M acid, and 80 °C leaching temperature, copper extraction was 50.4% and 57.5% in the non-UAL and UAL treatments, respectively. Ultrasonic waves enhanced the leaching rate, shortened the reaction time, and reduced acid consumption. Analysis of the rate-controlling step using a shrinking core model showed that leaching occurs after diffusion through the product layer but also chemical controlled in both non-UAL and UAL systems. The leaching mechanism was confirmed by characterizing the chalcopyrite and leached residue with X-ray diffraction and scanning electron microscopy/energy dispersive X-ray spectroscopy.
|