A friction test between steel and a brittle material at high contact pressures and high sliding velocities

Our aim is to characterize the interface behaviour between an aggregate material and steel. This work focuses on contact pressures and sliding velocities reaching 100 MPa and 10 m/s. The set-up consists in a cylindrical sample of the aggregate material which slips into a steel tube. The tube is both...

Full description

Bibliographic Details
Main Authors: Picart D., Delvare F., Bailly P., Durand B.
Format: Article
Language:English
Published: EDP Sciences 2012-08-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20122601017
Description
Summary:Our aim is to characterize the interface behaviour between an aggregate material and steel. This work focuses on contact pressures and sliding velocities reaching 100 MPa and 10 m/s. The set-up consists in a cylindrical sample of the aggregate material which slips into a steel tube. The tube is both a confinement vessel and a sliding surface. Thanks to confinement, the material can be tested under high stresses without failure. The interface pressure is generated by an axial compression. The sample is pressed on a spring, so it can be simultaneously compressed and rubbed on the tube. The set-up has been tested in the case of a quasi-static loading and the 100 MPa pressure has been reached. Then the set-up was mounted on a Split Hopkinson Pressure Bar device in order to reach higher velocities. Numerical simulations have been realized to check the feasibility and the relevance of this dynamic test. These results are analysed and compared to the experimental ones.
ISSN:2100-014X