About nondecreasing solutions for first order neutral functional differential equations

Conditions that solutions of the first order neutral functional differential equation \[ (Mx)(t)\equiv x^{\prime }(t)-(Sx^{\prime })(t)-(Ax)(t)+(Bx)(t)=f(t), t\in \lbrack 0,\omega ], \] are nondecreasing are obtained. Here $A:C_{[0,\omega ]}\rightarrow L_{[0,\omega ]}^{\infty }$ ,$\;B:C_{[0,\omega ]...

Full description

Bibliographic Details
Main Authors: Alexander Domoshnitsky, A. Maghakyan, S. Yanetz
Format: Article
Language:English
Published: University of Szeged 2012-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=1089