Multi-Criteria Evaluation of Distributed Energy System Based on Order Relation-Anti-Entropy Weight Method

Distributed Energy System (DES), a comprehensive energy utilization system distributed on user side, has been recognized as a promising energy utilization method that can improve energy efficiency, reduce greenhouse gas emissions, and achieve sustainable development. However, the DES is usually driv...

Full description

Bibliographic Details
Main Authors: Wanyu Wang, Haochen Li, Xueliang Hou, Qian Zhang, Songfeng Tian
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/1/246
Description
Summary:Distributed Energy System (DES), a comprehensive energy utilization system distributed on user side, has been recognized as a promising energy utilization method that can improve energy efficiency, reduce greenhouse gas emissions, and achieve sustainable development. However, the DES is usually driven by various energy sources, and it is a complex issue to decide the composition of the system. To improve the incompleteness of a single subjective or objective assessment. So, it is urgent to find a comprehensive and efficient decision-making method for different systems. This paper states a total of 23 indicators in 4 criterion group: technology, economy, environment, and society. Based on the combination of the order relation analysis method (G1) and the anti-entropy weighting method (a-EWM), a comprehensive evaluation model, order relation-anti-entropy weight model (G1-aEWM), of distributed energy is established. This comprehensive evaluation model is used to analyze a hospital in Henan and find the final solution for the distributed energy system of the hospital. The empirical analysis results verify the rationality of the comprehensive evaluation model and provide an evaluation basis for the establishment of distributed energy systems in the future.
ISSN:1996-1073