Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils

<p>Abstract</p> <p>Background</p> <p>Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited ea...

Full description

Bibliographic Details
Main Authors: Campbell Kevin P, de Bernabe Daniel, Leidal Kevin G, Islam Md Rafiqul, Jethwaney Deepa, Nauseef William M, Gibson Bradford W
Format: Article
Language:English
Published: BMC 2007-08-01
Series:Proteome Science
Online Access:http://www.proteomesci.com/content/5/1/12
id doaj-3553080eaa394b32b14638e12ec30277
record_format Article
spelling doaj-3553080eaa394b32b14638e12ec302772020-11-25T00:43:23ZengBMCProteome Science1477-59562007-08-01511210.1186/1477-5956-5-12Proteomic analysis of plasma membrane and secretory vesicles from human neutrophilsCampbell Kevin Pde Bernabe DanielLeidal Kevin GIslam Md RafiqulJethwaney DeepaNauseef William MGibson Bradford W<p>Abstract</p> <p>Background</p> <p>Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods.</p> <p>Results</p> <p>To identify the proteins light membrane fractions enriched for plasma membrane vesicles and secretory vesicles, we employed a proteomic approach, first using MALDI-TOF (peptide mass fingerprinting) and then by HPLC-MS/MS using a 3D ion trap mass spectrometer to analyze the two vesicle populations from resting PMN. We identified several proteins that are functionally important but had not previously been recovered in PMN secretory vesicles. Two such proteins, 5-lipoxygenase-activating protein (FLAP) and dysferlin were further validated by immunoblot analysis.</p> <p>Conclusion</p> <p>Our data demonstrate the broad array of proteins present in secretory vesicles that provides the PMN with the capacity for remarkable and rapid reorganization of its plasma membrane after exposure to proinflammatory agents or stimuli.</p> http://www.proteomesci.com/content/5/1/12
collection DOAJ
language English
format Article
sources DOAJ
author Campbell Kevin P
de Bernabe Daniel
Leidal Kevin G
Islam Md Rafiqul
Jethwaney Deepa
Nauseef William M
Gibson Bradford W
spellingShingle Campbell Kevin P
de Bernabe Daniel
Leidal Kevin G
Islam Md Rafiqul
Jethwaney Deepa
Nauseef William M
Gibson Bradford W
Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
Proteome Science
author_facet Campbell Kevin P
de Bernabe Daniel
Leidal Kevin G
Islam Md Rafiqul
Jethwaney Deepa
Nauseef William M
Gibson Bradford W
author_sort Campbell Kevin P
title Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
title_short Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
title_full Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
title_fullStr Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
title_full_unstemmed Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
title_sort proteomic analysis of plasma membrane and secretory vesicles from human neutrophils
publisher BMC
series Proteome Science
issn 1477-5956
publishDate 2007-08-01
description <p>Abstract</p> <p>Background</p> <p>Polymorphonuclear neutrophils (PMN) constitute an essential cellular component of innate host defense against microbial invasion and exhibit a wide array of responses both to particulate and soluble stimuli. As the cells recruited earliest during acute inflammation, PMN respond rapidly and release a variety of potent cytotoxic agents within minutes of exposure to microbes or their products. PMN rely on the redistribution of functionally important proteins, from intracellular compartments to the plasma membrane and phagosome, as the means by which to respond quickly. To determine the range of membrane proteins available for rapid recruitment during PMN activation, we analyzed the proteins in subcellular fractions enriched for plasma membrane and secretory vesicles recovered from the light membrane fraction of resting PMN after Percoll gradient centrifugation and free-flow electrophoresis purification using mass spectrometry-based proteomics methods.</p> <p>Results</p> <p>To identify the proteins light membrane fractions enriched for plasma membrane vesicles and secretory vesicles, we employed a proteomic approach, first using MALDI-TOF (peptide mass fingerprinting) and then by HPLC-MS/MS using a 3D ion trap mass spectrometer to analyze the two vesicle populations from resting PMN. We identified several proteins that are functionally important but had not previously been recovered in PMN secretory vesicles. Two such proteins, 5-lipoxygenase-activating protein (FLAP) and dysferlin were further validated by immunoblot analysis.</p> <p>Conclusion</p> <p>Our data demonstrate the broad array of proteins present in secretory vesicles that provides the PMN with the capacity for remarkable and rapid reorganization of its plasma membrane after exposure to proinflammatory agents or stimuli.</p>
url http://www.proteomesci.com/content/5/1/12
work_keys_str_mv AT campbellkevinp proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT debernabedaniel proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT leidalkeving proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT islammdrafiqul proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT jethwaneydeepa proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT nauseefwilliamm proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
AT gibsonbradfordw proteomicanalysisofplasmamembraneandsecretoryvesiclesfromhumanneutrophils
_version_ 1725278709278048256