The density and velocity of plasma bullets propagating along one dielectric tube

This study shows that the propagation of plasma bullets along one dielectric tube is strongly affected by many discharge parameters, such as the waveform of applied voltage (AC or pulsed DC), peak voltage, He flow rate, and the frequency of AC voltage. Analysis indicates that the density and velocit...

Full description

Bibliographic Details
Main Authors: Longfei Ji, Yang Xia, Zhenhua Bi, Jinhai Niu, Dongping Liu
Format: Article
Language:English
Published: AIP Publishing LLC 2015-08-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4929982
Description
Summary:This study shows that the propagation of plasma bullets along one dielectric tube is strongly affected by many discharge parameters, such as the waveform of applied voltage (AC or pulsed DC), peak voltage, He flow rate, and the frequency of AC voltage. Analysis indicates that the density and velocity of plasma bullets are mainly determined by the electric field at the front of plasma bullets. These discharge parameters may significantly influence the distribution of plasma potential along the tube, thus control the electric field at the front of plasma bullets and their propagation. An increase in the pulsed DC voltage with its rise time of <40-50 ns can lead to an obvious improvement in the electric field at the front of plasma bullets, resulting in generation of a plasma in the high density gas and a fast propagation of plasma bullets. He flowing through the tube can contribute to the surface diffusion of charged species, and greatly increase the electric field at the front of plasma bullets. During the propagation of plasma bullets, their density is decreased due to the surface recombination of charged species, such as electrons and ions.
ISSN:2158-3226