Development of Nanostructured AA3103 by Equal Channel Angular Pressing and Thermal Treatments

This work presents a study related to the achievement of a nanometric structure in AA3103, employing severe plastic deformation processes (SPD), in this case equal channel angular pressing (ECAP). The changes in the mechanical properties and in the microstructure of AA3103 were studied after being p...

Full description

Bibliographic Details
Main Authors: C. J. Luis, R. Luri, J. León, I. Puertas, D. Salcedo, I. Pérez
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2014/953717
Description
Summary:This work presents a study related to the achievement of a nanometric structure in AA3103, employing severe plastic deformation processes (SPD), in this case equal channel angular pressing (ECAP). The changes in the mechanical properties and in the microstructure of AA3103 were studied after being processed by ECAP. Subsequently, scanning electron microscopy was used to determine the evolution of the microstructure after different thermal treatments on the material processed by this severe plastic deformation process. Furthermore, a more profound knowledge of the changes in the mechanical properties of this aluminium alloy was obtained. It was demonstrated that with different appropriate combinations of thermal treatments and ECAP processing, it is possible to significantly improve the mechanical properties through obtaining submicrometric grain size structures.
ISSN:1687-4110
1687-4129