Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario

Abstract A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg’s uncertainty principle. In this scenario, state eigenvectors of the posit...

Full description

Bibliographic Details
Main Authors: M. F. Gusson, A. Oakes O. Gonçalves, R. O. Francisco, R. G. Furtado, J. C. Fabris, J. A. Nogueira
Format: Article
Language:English
Published: SpringerOpen 2018-03-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-5659-6
id doaj-35333d8c327b4717ad811004cf42f88a
record_format Article
spelling doaj-35333d8c327b4717ad811004cf42f88a2020-11-24T21:33:23ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522018-03-017831710.1140/epjc/s10052-018-5659-6Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenarioM. F. Gusson0A. Oakes O. Gonçalves1R. O. Francisco2R. G. Furtado3J. C. Fabris4J. A. Nogueira5Departamento de Física, Universidade Federal do Espírito SantoDepartamento de Física, Universidade Federal do Espírito SantoDepartamento de Física, Universidade Federal do Espírito SantoDepartamento de Física, Universidade Federal do Espírito SantoDepartamento de Física, Universidade Federal do Espírito SantoDepartamento de Física, Universidade Federal do Espírito SantoAbstract A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg’s uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with a Dirac $$\delta $$ δ -function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for the scattering states. We show that leading corrections are of order of the minimal length $$({ O}(\sqrt{\beta }))$$ (O(β)) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac $${{\delta }}$$ δ -function potential in the one-dimensional case is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of the order of the minimal length and $$\varDelta x_{\min } \le 10^{-25}$$ Δxmin≤10-25 m.http://link.springer.com/article/10.1140/epjc/s10052-018-5659-6
collection DOAJ
language English
format Article
sources DOAJ
author M. F. Gusson
A. Oakes O. Gonçalves
R. O. Francisco
R. G. Furtado
J. C. Fabris
J. A. Nogueira
spellingShingle M. F. Gusson
A. Oakes O. Gonçalves
R. O. Francisco
R. G. Furtado
J. C. Fabris
J. A. Nogueira
Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
European Physical Journal C: Particles and Fields
author_facet M. F. Gusson
A. Oakes O. Gonçalves
R. O. Francisco
R. G. Furtado
J. C. Fabris
J. A. Nogueira
author_sort M. F. Gusson
title Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
title_short Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
title_full Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
title_fullStr Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
title_full_unstemmed Dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
title_sort dirac $$\delta $$ δ -function potential in quasiposition representation of a minimal-length scenario
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2018-03-01
description Abstract A minimal-length scenario can be considered as an effective description of quantum gravity effects. In quantum mechanics the introduction of a minimal length can be accomplished through a generalization of Heisenberg’s uncertainty principle. In this scenario, state eigenvectors of the position operator are no longer physical states and the representation in momentum space or a representation in a quasiposition space must be used. In this work, we solve the Schroedinger equation with a Dirac $$\delta $$ δ -function potential in quasiposition space. We calculate the bound state energy and the coefficients of reflection and transmission for the scattering states. We show that leading corrections are of order of the minimal length $$({ O}(\sqrt{\beta }))$$ (O(β)) and the coefficients of reflection and transmission are no longer the same for the Dirac delta well and barrier as in ordinary quantum mechanics. Furthermore, assuming that the equivalence of the 1s state energy of the hydrogen atom and the bound state energy of the Dirac $${{\delta }}$$ δ -function potential in the one-dimensional case is kept in a minimal-length scenario, we also find that the leading correction term for the ground state energy of the hydrogen atom is of the order of the minimal length and $$\varDelta x_{\min } \le 10^{-25}$$ Δxmin≤10-25 m.
url http://link.springer.com/article/10.1140/epjc/s10052-018-5659-6
work_keys_str_mv AT mfgusson diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
AT aoakesogoncalves diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
AT rofrancisco diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
AT rgfurtado diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
AT jcfabris diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
AT janogueira diracdeltadfunctionpotentialinquasipositionrepresentationofaminimallengthscenario
_version_ 1725953535460245504