Influence of Sintering Temperature on Mechanical Properties of Glass-Ceramics Produced with Windshield Waste

In this work, glass-ceramics were produced with mechanical and physical properties, using recycled glass powder from windshields as raw material. The glass powder was formed and sintered at temperatures 600, 650, 700, 750, and 800°C. Pieces were also produced with the addition of niobium oxide to th...

Full description

Bibliographic Details
Main Authors: Hiasmim R. Gualberto, Ronie S. Lopes, Fernanda A. N. G. da Silva, Etyene Schnurr, Edgard Poiate Junior, Mônica C. de Andrade
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2019/2531027
Description
Summary:In this work, glass-ceramics were produced with mechanical and physical properties, using recycled glass powder from windshields as raw material. The glass powder was formed and sintered at temperatures 600, 650, 700, 750, and 800°C. Pieces were also produced with the addition of niobium oxide to the glass powder. The flexural strength and the Archimedes density of the produced parts were determined. The reliability of the results was evaluated by the Weibull statistic. X-ray diffraction was performed. Maximum flexural strength was 77.64 MPa at 750°C, with the addition of niobium oxide at 43.86 MPa at 700°C. X-ray diffraction showed crystalline structures in the specimens with the addition of the nucleating agent, confirming the production of glass-ceramics in this composition. The pure glass powder only crystallized from 750°C. The Nb2O5 favors the formation of crystalline structures in the vitreous matrix at low temperatures and with piezoelectric structures.
ISSN:1687-806X
1687-8078