Analysis of the Effect of Different Combinations of Observation Satellites on the Resolving Accuracy of GNSS Observation Data

In this paper, 24 C-level control points under different terrain conditions were selected to be the testing points. The binary-satellite system (GPS+GLONASS) and the triple-satellite system with BeiDou Navigation Satellite System (BDS) (BDS+GPS+GLONASS) were adopted for static measurement; and the o...

Full description

Bibliographic Details
Main Authors: Wang Junze, Yao Maohua, Zhou Wenting, Chen Xiangping
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/66/e3sconf_icgec2020_03025.pdf
Description
Summary:In this paper, 24 C-level control points under different terrain conditions were selected to be the testing points. The binary-satellite system (GPS+GLONASS) and the triple-satellite system with BeiDou Navigation Satellite System (BDS) (BDS+GPS+GLONASS) were adopted for static measurement; and the observation data from BeiDou Ground-based Augumentation System (GBAS) base stations in Guangxi were collected for solution. By comparing the residuals of GPS tri-dimensional baseline vectors and the internal accord accuracy of each control point under the binary and triple-satellite systems, the effect of data collected by different satellite systems under different terrain conditions on measurement accuracy was studied. According to the results, (1) the triple-satellite system with BDS showed more stable measurement accuracy; (2) in plane, the two systems were of equivalent measurement accuracy in mountainous and flat areas; in elevation, the triple-satellite system showed higher and more stable measurement accuracy.
ISSN:2267-1242