Goluzin's extension of the Schwarz-Pick inequality

<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <...

Full description

Bibliographic Details
Main Author: Yamashita Shinji
Format: Article
Language:English
Published: SpringerOpen 1997-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/1/781962
id doaj-34eba5710915400bbc46ab740c546df0
record_format Article
spelling doaj-34eba5710915400bbc46ab740c546df02020-11-24T23:43:19ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119974781962Goluzin's extension of the Schwarz-Pick inequalityYamashita Shinji<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincar&#233; metric.</p>http://www.journalofinequalitiesandapplications.com/content/1/781962Bounded holomorphic functionsSchwarz's inequalityPoincar&#233; density
collection DOAJ
language English
format Article
sources DOAJ
author Yamashita Shinji
spellingShingle Yamashita Shinji
Goluzin's extension of the Schwarz-Pick inequality
Journal of Inequalities and Applications
Bounded holomorphic functions
Schwarz's inequality
Poincar&#233; density
author_facet Yamashita Shinji
author_sort Yamashita Shinji
title Goluzin's extension of the Schwarz-Pick inequality
title_short Goluzin's extension of the Schwarz-Pick inequality
title_full Goluzin's extension of the Schwarz-Pick inequality
title_fullStr Goluzin's extension of the Schwarz-Pick inequality
title_full_unstemmed Goluzin's extension of the Schwarz-Pick inequality
title_sort goluzin's extension of the schwarz-pick inequality
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 1997-01-01
description <p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincar&#233; metric.</p>
topic Bounded holomorphic functions
Schwarz's inequality
Poincar&#233; density
url http://www.journalofinequalitiesandapplications.com/content/1/781962
work_keys_str_mv AT yamashitashinji goluzinsextensionoftheschwarzpickinequality
_version_ 1725501990811729920