Goluzin's extension of the Schwarz-Pick inequality
<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
1997-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/1/781962 |
id |
doaj-34eba5710915400bbc46ab740c546df0 |
---|---|
record_format |
Article |
spelling |
doaj-34eba5710915400bbc46ab740c546df02020-11-24T23:43:19ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X1997-01-0119974781962Goluzin's extension of the Schwarz-Pick inequalityYamashita Shinji<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincaré metric.</p>http://www.journalofinequalitiesandapplications.com/content/1/781962Bounded holomorphic functionsSchwarz's inequalityPoincaré density |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yamashita Shinji |
spellingShingle |
Yamashita Shinji Goluzin's extension of the Schwarz-Pick inequality Journal of Inequalities and Applications Bounded holomorphic functions Schwarz's inequality Poincaré density |
author_facet |
Yamashita Shinji |
author_sort |
Yamashita Shinji |
title |
Goluzin's extension of the Schwarz-Pick inequality |
title_short |
Goluzin's extension of the Schwarz-Pick inequality |
title_full |
Goluzin's extension of the Schwarz-Pick inequality |
title_fullStr |
Goluzin's extension of the Schwarz-Pick inequality |
title_full_unstemmed |
Goluzin's extension of the Schwarz-Pick inequality |
title_sort |
goluzin's extension of the schwarz-pick inequality |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
1997-01-01 |
description |
<p/> <p>For a function <inline-formula><graphic file="1029-242X-1997-781962-i1.gif"/></inline-formula> holomorphic and bounded, <inline-formula><graphic file="1029-242X-1997-781962-i2.gif"/></inline-formula>, with the expansion <inline-formula><graphic file="1029-242X-1997-781962-i3.gif"/></inline-formula> in the disk <inline-formula><graphic file="1029-242X-1997-781962-i4.gif"/></inline-formula>, we set <inline-formula><graphic file="1029-242X-1997-781962-i5.gif"/></inline-formula> Goluzin's extension of the Schwarz-Pick inequality is that <inline-formula><graphic file="1029-242X-1997-781962-i6.gif"/></inline-formula> We shall further improve Goluzin's inequality with a complete description on the equality condition. For a holomorphic map from a hyperbolic plane domain into another, one can prove a similar result in terms of the Poincaré metric.</p> |
topic |
Bounded holomorphic functions Schwarz's inequality Poincaré density |
url |
http://www.journalofinequalitiesandapplications.com/content/1/781962 |
work_keys_str_mv |
AT yamashitashinji goluzinsextensionoftheschwarzpickinequality |
_version_ |
1725501990811729920 |