The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace

The questions of the uniqueness of the best non-symmetric $L_1$-approximant with weight in the finite dimensional subspace and the connection of such tasks with $A_{\alpha ,\beta }$-subspaces were considered in this article. This result generalizes the known result of Kroo on the case of non-symme...

Full description

Bibliographic Details
Main Authors: M.Ye. Tkachenko, V.O. Traktynskyi
Format: Article
Language:English
Published: Oles Honchar Dnipro National University 2020-08-01
Series:Researches in Mathematics
Subjects:
Online Access:https://vestnmath.dnu.dp.ua/index.php/rim/article/view/128/128
id doaj-34c6c242430541ee95d461a6b435aa6f
record_format Article
spelling doaj-34c6c242430541ee95d461a6b435aa6f2020-11-25T03:43:22ZengOles Honchar Dnipro National UniversityResearches in Mathematics2664-49912664-50092020-08-01281435010.15421/242005The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspaceM.Ye. Tkachenko0V.O. Traktynskyi1Oles Honchar Dnipro National UniversityOles Honchar Dnipro National UniversityThe questions of the uniqueness of the best non-symmetric $L_1$-approximant with weight in the finite dimensional subspace and the connection of such tasks with $A_{\alpha ,\beta }$-subspaces were considered in this article. This result generalizes the known result of Kroo on the case of non-symmetric approximation.https://vestnmath.dnu.dp.ua/index.php/rim/article/view/128/128$(\alpha; \beta)$-approximationkb-space$l_1$-normweightcontinuous functions
collection DOAJ
language English
format Article
sources DOAJ
author M.Ye. Tkachenko
V.O. Traktynskyi
spellingShingle M.Ye. Tkachenko
V.O. Traktynskyi
The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
Researches in Mathematics
$(\alpha; \beta)$-approximation
kb-space
$l_1$-norm
weight
continuous functions
author_facet M.Ye. Tkachenko
V.O. Traktynskyi
author_sort M.Ye. Tkachenko
title The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
title_short The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
title_full The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
title_fullStr The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
title_full_unstemmed The uniqueness of the best non-symmetric $L_1$-approximant with a weight by $A_{\alpha ,\beta }$-subspace
title_sort uniqueness of the best non-symmetric $l_1$-approximant with a weight by $a_{\alpha ,\beta }$-subspace
publisher Oles Honchar Dnipro National University
series Researches in Mathematics
issn 2664-4991
2664-5009
publishDate 2020-08-01
description The questions of the uniqueness of the best non-symmetric $L_1$-approximant with weight in the finite dimensional subspace and the connection of such tasks with $A_{\alpha ,\beta }$-subspaces were considered in this article. This result generalizes the known result of Kroo on the case of non-symmetric approximation.
topic $(\alpha; \beta)$-approximation
kb-space
$l_1$-norm
weight
continuous functions
url https://vestnmath.dnu.dp.ua/index.php/rim/article/view/128/128
work_keys_str_mv AT myetkachenko theuniquenessofthebestnonsymmetricl1approximantwithaweightbyaalphabetasubspace
AT votraktynskyi theuniquenessofthebestnonsymmetricl1approximantwithaweightbyaalphabetasubspace
AT myetkachenko uniquenessofthebestnonsymmetricl1approximantwithaweightbyaalphabetasubspace
AT votraktynskyi uniquenessofthebestnonsymmetricl1approximantwithaweightbyaalphabetasubspace
_version_ 1724520360955609088