Quantum Fourier transform for nanoscale quantum sensing

Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT...

Full description

Bibliographic Details
Main Authors: Vadim Vorobyov, Sebastian Zaiser, Nikolas Abt, Jonas Meinel, Durga Dasari, Philipp Neumann, Jörg Wrachtrup
Format: Article
Language:English
Published: Nature Publishing Group 2021-08-01
Series:npj Quantum Information
Online Access:https://doi.org/10.1038/s41534-021-00463-6
id doaj-34be9d64cfe540fe931175307bdb2cc8
record_format Article
spelling doaj-34be9d64cfe540fe931175307bdb2cc82021-08-15T11:17:25ZengNature Publishing Groupnpj Quantum Information2056-63872021-08-01711810.1038/s41534-021-00463-6Quantum Fourier transform for nanoscale quantum sensingVadim Vorobyov0Sebastian Zaiser1Nikolas Abt2Jonas Meinel3Durga Dasari4Philipp Neumann5Jörg Wrachtrup63. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of StuttgartAbstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.https://doi.org/10.1038/s41534-021-00463-6
collection DOAJ
language English
format Article
sources DOAJ
author Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
spellingShingle Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
Quantum Fourier transform for nanoscale quantum sensing
npj Quantum Information
author_facet Vadim Vorobyov
Sebastian Zaiser
Nikolas Abt
Jonas Meinel
Durga Dasari
Philipp Neumann
Jörg Wrachtrup
author_sort Vadim Vorobyov
title Quantum Fourier transform for nanoscale quantum sensing
title_short Quantum Fourier transform for nanoscale quantum sensing
title_full Quantum Fourier transform for nanoscale quantum sensing
title_fullStr Quantum Fourier transform for nanoscale quantum sensing
title_full_unstemmed Quantum Fourier transform for nanoscale quantum sensing
title_sort quantum fourier transform for nanoscale quantum sensing
publisher Nature Publishing Group
series npj Quantum Information
issn 2056-6387
publishDate 2021-08-01
description Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.
url https://doi.org/10.1038/s41534-021-00463-6
work_keys_str_mv AT vadimvorobyov quantumfouriertransformfornanoscalequantumsensing
AT sebastianzaiser quantumfouriertransformfornanoscalequantumsensing
AT nikolasabt quantumfouriertransformfornanoscalequantumsensing
AT jonasmeinel quantumfouriertransformfornanoscalequantumsensing
AT durgadasari quantumfouriertransformfornanoscalequantumsensing
AT philippneumann quantumfouriertransformfornanoscalequantumsensing
AT jorgwrachtrup quantumfouriertransformfornanoscalequantumsensing
_version_ 1721206948668375040