Quantum Fourier transform for nanoscale quantum sensing
Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2021-08-01
|
Series: | npj Quantum Information |
Online Access: | https://doi.org/10.1038/s41534-021-00463-6 |
id |
doaj-34be9d64cfe540fe931175307bdb2cc8 |
---|---|
record_format |
Article |
spelling |
doaj-34be9d64cfe540fe931175307bdb2cc82021-08-15T11:17:25ZengNature Publishing Groupnpj Quantum Information2056-63872021-08-01711810.1038/s41534-021-00463-6Quantum Fourier transform for nanoscale quantum sensingVadim Vorobyov0Sebastian Zaiser1Nikolas Abt2Jonas Meinel3Durga Dasari4Philipp Neumann5Jörg Wrachtrup63. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of Stuttgart3. Physikalisches Institut, IQST and Centre for Applied Quantum Technologies, University of StuttgartAbstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.https://doi.org/10.1038/s41534-021-00463-6 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup |
spellingShingle |
Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup Quantum Fourier transform for nanoscale quantum sensing npj Quantum Information |
author_facet |
Vadim Vorobyov Sebastian Zaiser Nikolas Abt Jonas Meinel Durga Dasari Philipp Neumann Jörg Wrachtrup |
author_sort |
Vadim Vorobyov |
title |
Quantum Fourier transform for nanoscale quantum sensing |
title_short |
Quantum Fourier transform for nanoscale quantum sensing |
title_full |
Quantum Fourier transform for nanoscale quantum sensing |
title_fullStr |
Quantum Fourier transform for nanoscale quantum sensing |
title_full_unstemmed |
Quantum Fourier transform for nanoscale quantum sensing |
title_sort |
quantum fourier transform for nanoscale quantum sensing |
publisher |
Nature Publishing Group |
series |
npj Quantum Information |
issn |
2056-6387 |
publishDate |
2021-08-01 |
description |
Abstract The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments. |
url |
https://doi.org/10.1038/s41534-021-00463-6 |
work_keys_str_mv |
AT vadimvorobyov quantumfouriertransformfornanoscalequantumsensing AT sebastianzaiser quantumfouriertransformfornanoscalequantumsensing AT nikolasabt quantumfouriertransformfornanoscalequantumsensing AT jonasmeinel quantumfouriertransformfornanoscalequantumsensing AT durgadasari quantumfouriertransformfornanoscalequantumsensing AT philippneumann quantumfouriertransformfornanoscalequantumsensing AT jorgwrachtrup quantumfouriertransformfornanoscalequantumsensing |
_version_ |
1721206948668375040 |