Summary: | The pathological process of neovascularization of the retina plays a critical role in causing vision loss in several diseases, including diabetes, retinal vein occlusion, and sickle cell disease. Retinal neovascularization can lead to vitreous hemorrhage and retinal detachment, yet the pathological process of neovascularization is a complex phenomenon under active investigation. Understanding and monitoring retinal neovascularization is critically important in clinical ophthalmology. This study describes a novel multimodal ocular imaging system which combines photoacoustic microscopy (PAM) and a spectral domain optical coherence tomography (SD-OCT) to improve the visualization of retinal neovascularization (RNV), their depth, and the surrounding anatomy in living rabbits. RNV was induced in New Zealand rabbits by intravitreal injection of vascular endothelial growth factor (VEGF). The retinal vasculature before and after injection at various times was monitored and evaluated using multimodal imaging including color fundus photography, fluorescein angiography (FA), OCT, and PAM. In vivo experiments demonstrate that PAM imaging distinctly characterized the location as well as the morphology of individual RNV with high contrast at a safe laser energy of 80 nJ. SD-OCT was used to identify a cross-sectional structure of RNV. In addition, dynamic changes in the retinal morphology and retinal neovascularization were observed at day 4, 5, 6, 7, 9, 11, 14, 28, and day 35 after VEGF injection. PAM demonstrated high-resolution optical absorption of hemoglobin and vascular imaging of the retina and choroid with increased depth of penetration. With the current multimodal imaging system, RNV can be easily visualized in both 2D and 3D angiography. This multimodal ocular imaging system provides improved characterization of the microvasculature in a safe manner in larger rabbit eyes.
|