Surface Hydrophobization of Block-Shaped Wood with Rapid Benzylation

With the aim of utilizing wood as a carbon cycle-oriented material, the improvement of hydrophobicity has been actively studied to solve manufacturing problems, such as dimensional stability and biodeterioration resistance. The introduction of benzyl group is a promising chemical modification for hy...

Full description

Bibliographic Details
Main Authors: Mitsuru Abe, Masako Seki, Tsunehisa Miki, Masakazu Nishida
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/12/8/1028
Description
Summary:With the aim of utilizing wood as a carbon cycle-oriented material, the improvement of hydrophobicity has been actively studied to solve manufacturing problems, such as dimensional stability and biodeterioration resistance. The introduction of benzyl group is a promising chemical modification for hydrophobizing wood. However, conventional benzylation methods are not suitable for industrial applications because they require high temperature and long reaction times. In this study, a novel method was developed for quickly benzylating the surface of block-shaped wood using an aqueous solution of tetra-<i>n</i>-butylphosphonium hydroxide as a pretreatment solvent and no heat. The color and shape of the benzylated wood was almost unchanged from that before the treatment. Analysis of the resulting chemical structure suggested that the developed method causes less damage to carbohydrates compared with the conventional method, which involves heating and stirring. The proposed method successfully imparted hydrophobicity and thermoplasticity to the benzylated wood surface. Furthermore, hydrophobicity of the benzylated wood was further improved by a simple heat treatment for only approximately 5 min. The water contact angle became ≥110° and remained almost unchanged even after 1 min after water dropping.
ISSN:1999-4907