QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS

Previous work in the research field of video surveillance intensively focused on separated aspects of object detection, data association, pattern recognition and system design. In contrast, we propose a holistic approach for object tracking in a self-organizing and distributed smart camera network....

Full description

Bibliographic Details
Main Authors: U. Jaenen, U. Feuerhake, T. Klinger, D. Muhle, J. Haehner, M. Sester, C. Heipke
Format: Article
Language:English
Published: Copernicus Publications 2012-07-01
Series:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-4/269/2012/isprsannals-I-4-269-2012.pdf
id doaj-347f98c4a9fb47819b8a8420b57c8d2b
record_format Article
spelling doaj-347f98c4a9fb47819b8a8420b57c8d2b2020-11-25T02:32:44ZengCopernicus PublicationsISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences2194-90422194-90502012-07-01I-426927410.5194/isprsannals-I-4-269-2012QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKSU. Jaenen0U. Feuerhake1T. Klinger2D. Muhle3J. Haehner4M. Sester5C. Heipke6Universitaet Augsburg - Lehrstuhl fuer Organic Computing, GermanyLeibniz Universitaet Hannover - Institut fuer Kartographie und Geoinformatik,Appelstrasse 9a, 30167 Hannover, GermanyLeibniz Universitaet Hannover - Institut fuer Photogrammetrie und GeoInformation,Appelstrasse 9a, 30167 Hannover, GermanyLeibniz Universitaet Hannover - Institut fuer Photogrammetrie und GeoInformation,Appelstrasse 9a, 30167 Hannover, GermanyUniversitaet Augsburg - Lehrstuhl fuer Organic Computing, GermanyLeibniz Universitaet Hannover - Institut fuer Kartographie und Geoinformatik,Appelstrasse 9a, 30167 Hannover, GermanyLeibniz Universitaet Hannover - Institut fuer Photogrammetrie und GeoInformation,Appelstrasse 9a, 30167 Hannover, GermanyPrevious work in the research field of video surveillance intensively focused on separated aspects of object detection, data association, pattern recognition and system design. In contrast, we propose a holistic approach for object tracking in a self-organizing and distributed smart camera network. Each observation task is represented by a software-agent which improves the tracking performance by collaborative behavior. An object tracking agent detects persons in a video stream and associates them with a trajectory. The pattern recognition agent analyses these trajectories by detecting points of interest within the observation field. These are characterized by a non-deterministic behavior of the moving person. The trajectory points (enriched by the results of the pattern recognition agent) will be used by a configuration agent to align the cameras field of view. We show that this collaboration improves the performance of the observation system by increasing the amount of detected trajectory points by 22%.http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-4/269/2012/isprsannals-I-4-269-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author U. Jaenen
U. Feuerhake
T. Klinger
D. Muhle
J. Haehner
M. Sester
C. Heipke
spellingShingle U. Jaenen
U. Feuerhake
T. Klinger
D. Muhle
J. Haehner
M. Sester
C. Heipke
QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
author_facet U. Jaenen
U. Feuerhake
T. Klinger
D. Muhle
J. Haehner
M. Sester
C. Heipke
author_sort U. Jaenen
title QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
title_short QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
title_full QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
title_fullStr QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
title_full_unstemmed QTRAJECTORIES: IMPROVING THE QUALITY OF OBJECT TRACKING USING SELF-ORGANIZING CAMERA NETWORKS
title_sort qtrajectories: improving the quality of object tracking using self-organizing camera networks
publisher Copernicus Publications
series ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
issn 2194-9042
2194-9050
publishDate 2012-07-01
description Previous work in the research field of video surveillance intensively focused on separated aspects of object detection, data association, pattern recognition and system design. In contrast, we propose a holistic approach for object tracking in a self-organizing and distributed smart camera network. Each observation task is represented by a software-agent which improves the tracking performance by collaborative behavior. An object tracking agent detects persons in a video stream and associates them with a trajectory. The pattern recognition agent analyses these trajectories by detecting points of interest within the observation field. These are characterized by a non-deterministic behavior of the moving person. The trajectory points (enriched by the results of the pattern recognition agent) will be used by a configuration agent to align the cameras field of view. We show that this collaboration improves the performance of the observation system by increasing the amount of detected trajectory points by 22%.
url http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-4/269/2012/isprsannals-I-4-269-2012.pdf
work_keys_str_mv AT ujaenen qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT ufeuerhake qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT tklinger qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT dmuhle qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT jhaehner qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT msester qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
AT cheipke qtrajectoriesimprovingthequalityofobjecttrackingusingselforganizingcameranetworks
_version_ 1724818104675991552