Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis

The present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular...

Full description

Bibliographic Details
Main Authors: Liang Ji, Xiaoyu Guo, Jiachen Lv, Fan Xiao, Wangjun Zhang, Jie Li, Zhitao Lin, Bei Sun, Gang Wang
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Oxidative Medicine and Cellular Longevity
Online Access:http://dx.doi.org/10.1155/2019/4363672
id doaj-347e97fd6ee24de8821224be494ed456
record_format Article
spelling doaj-347e97fd6ee24de8821224be494ed4562020-11-24T21:12:02ZengHindawi LimitedOxidative Medicine and Cellular Longevity1942-09001942-09942019-01-01201910.1155/2019/43636724363672Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute PancreatitisLiang Ji0Xiaoyu Guo1Jiachen Lv2Fan Xiao3Wangjun Zhang4Jie Li5Zhitao Lin6Bei Sun7Gang Wang8The Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 3 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe Department of General Surgery, The No. 1 Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, ChinaThe present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular energy metabolism status. Wistar rats and AR42J cells were used to establish AP models. When indicated, a HIF-1α knockdown with or without a Gln supplementation was administered. In vivo, local and systemic inflammatory injuries were assessed by serum cytokine measurement, H&E staining, and transmission electron microscope (TEM) observation of pancreatic tissue. In vitro, intracellular energy metabolism status was evaluated by measuring the intracellular adenosine triphosphate (ATP), lactic acid, and Ca2+ concentrations and the mitochondrial potential. In addition, changes in the apoptotic activity were analyzed using TUNEL staining in vivo and an apoptosis assay in vitro. HIF-1α knockdown alleviated AP-related inflammatory injury as indicated by the measurements of serum cytokines and examinations of TEM and H&E staining of pancreatic tissues. HIF-1α knockdown played an antioxidative role against AP-related injuries by preventing the increase in the intracellular Ca2+ concentration and the decrease in the mitochondrial membrane potential and subsequently by suppressing the glycolysis pathway and increasing energy anabolism in AR42J cells after AP induction. Apoptosis was significantly upregulated when HIF-1α was knocked down before AP induction due to an attenuation of the translocation of nuclear factor-kappa B to the nuclei. Furthermore, these merits of HIF-1α knockdown in the relief of the metabolic stress and upregulation of apoptosis were more significant when Gln was administered concomitantly. In conclusion, Gln-supplemented HIF-1α knockdown might be promising for the future management of AP by relieving the intracellular energy stress, thereby attenuating the predominance of necrosis over apoptosis.http://dx.doi.org/10.1155/2019/4363672
collection DOAJ
language English
format Article
sources DOAJ
author Liang Ji
Xiaoyu Guo
Jiachen Lv
Fan Xiao
Wangjun Zhang
Jie Li
Zhitao Lin
Bei Sun
Gang Wang
spellingShingle Liang Ji
Xiaoyu Guo
Jiachen Lv
Fan Xiao
Wangjun Zhang
Jie Li
Zhitao Lin
Bei Sun
Gang Wang
Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
Oxidative Medicine and Cellular Longevity
author_facet Liang Ji
Xiaoyu Guo
Jiachen Lv
Fan Xiao
Wangjun Zhang
Jie Li
Zhitao Lin
Bei Sun
Gang Wang
author_sort Liang Ji
title Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
title_short Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
title_full Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
title_fullStr Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
title_full_unstemmed Hypoxia-Inducible Factor-1α Knockdown Plus Glutamine Supplementation Attenuates the Predominance of Necrosis over Apoptosis by Relieving Cellular Energy Stress in Acute Pancreatitis
title_sort hypoxia-inducible factor-1α knockdown plus glutamine supplementation attenuates the predominance of necrosis over apoptosis by relieving cellular energy stress in acute pancreatitis
publisher Hindawi Limited
series Oxidative Medicine and Cellular Longevity
issn 1942-0900
1942-0994
publishDate 2019-01-01
description The present study was conducted to investigate the effect and potential mechanism of hypoxia-inducible factor-1α (HIF-1α) genetic inhibition plus glutamine (Gln) supplementation on necrosis-apoptosis imbalance during acute pancreatitis (AP), with a specific focus on the regulations of intracellular energy metabolism status. Wistar rats and AR42J cells were used to establish AP models. When indicated, a HIF-1α knockdown with or without a Gln supplementation was administered. In vivo, local and systemic inflammatory injuries were assessed by serum cytokine measurement, H&E staining, and transmission electron microscope (TEM) observation of pancreatic tissue. In vitro, intracellular energy metabolism status was evaluated by measuring the intracellular adenosine triphosphate (ATP), lactic acid, and Ca2+ concentrations and the mitochondrial potential. In addition, changes in the apoptotic activity were analyzed using TUNEL staining in vivo and an apoptosis assay in vitro. HIF-1α knockdown alleviated AP-related inflammatory injury as indicated by the measurements of serum cytokines and examinations of TEM and H&E staining of pancreatic tissues. HIF-1α knockdown played an antioxidative role against AP-related injuries by preventing the increase in the intracellular Ca2+ concentration and the decrease in the mitochondrial membrane potential and subsequently by suppressing the glycolysis pathway and increasing energy anabolism in AR42J cells after AP induction. Apoptosis was significantly upregulated when HIF-1α was knocked down before AP induction due to an attenuation of the translocation of nuclear factor-kappa B to the nuclei. Furthermore, these merits of HIF-1α knockdown in the relief of the metabolic stress and upregulation of apoptosis were more significant when Gln was administered concomitantly. In conclusion, Gln-supplemented HIF-1α knockdown might be promising for the future management of AP by relieving the intracellular energy stress, thereby attenuating the predominance of necrosis over apoptosis.
url http://dx.doi.org/10.1155/2019/4363672
work_keys_str_mv AT liangji hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT xiaoyuguo hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT jiachenlv hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT fanxiao hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT wangjunzhang hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT jieli hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT zhitaolin hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT beisun hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
AT gangwang hypoxiainduciblefactor1aknockdownplusglutaminesupplementationattenuatesthepredominanceofnecrosisoverapoptosisbyrelievingcellularenergystressinacutepancreatitis
_version_ 1716751829242478592