Dynamically generated inflation from non-Riemannian volume forms

Abstract We propose a simple modified gravity model without any initial matter fields in terms of several alternative non-Riemannian spacetime volume elements within the metric (second order) formalism. We show how the non-Riemannian volume-elements, when passing to the physical Einstein frame, crea...

Full description

Bibliographic Details
Main Authors: D. Benisty, E. I. Guendelman, E. Nissimov, S. Pacheva
Format: Article
Language:English
Published: SpringerOpen 2019-09-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-019-7310-6
Description
Summary:Abstract We propose a simple modified gravity model without any initial matter fields in terms of several alternative non-Riemannian spacetime volume elements within the metric (second order) formalism. We show how the non-Riemannian volume-elements, when passing to the physical Einstein frame, create a canonical scalar field and produce dynamically a non-trivial inflationary-type potential for the latter with a large flat region and a stable low-lying minimum. We study the evolution of the cosmological solutions from the point of view of theory of dynamical systems. The theory predicts the spectral index $$n_s \approx 0.96$$ ns≈0.96 and the tensor-to-scalar ratio $$r \approx 0.002$$ r≈0.002 for 60 e-folds, which is in accordance with the observational data. In the future Euclid and SPHEREx missions or the BICEP3 experiment are expected to provide experimental evidence to test those predictions.
ISSN:1434-6044
1434-6052