Estimation formula for residual stress from the blind-hole drilling method

In this study, the accuracy of blind-hole method on weld residual stress estimation is investigated. A modified parameter group has also proposed to improve the accuracy. The thermal-elastic-plastic finite element model is employed to build up the residual stress distribution and the blind-hole proc...

Full description

Bibliographic Details
Main Authors: Chi-Liang Kung, Ah-Der Lin, Po-Wei Huang, Chao-Ming Hsu
Format: Article
Language:English
Published: SAGE Publishing 2018-08-01
Series:Advances in Mechanical Engineering
Online Access:https://doi.org/10.1177/1687814018787409
Description
Summary:In this study, the accuracy of blind-hole method on weld residual stress estimation is investigated. A modified parameter group has also proposed to improve the accuracy. The thermal-elastic-plastic finite element model is employed to build up the residual stress distribution and the blind-hole process. The MSC Marc finite element software package is used to simulate the welding process and the welding residual stress and strain distributions around the weld of two inconel 690 alloy plates filled with I-52 GTAW filler. Then the process of the traditional blind hole is simulated by employing the inactive elements. The data of the residual strain variations of strain gages located around the blind hole is introduced into the blind-hole method to estimate the original residual stress components at the hole center. The effects of drilling depth, drilling size, gage radius, gage position, and the distance on the accuracy of estimated residual stress have also been studied and discussed. Based on the residual stress components simulated from the welding process, a modified stress parameter group has also been proposed to improve the accuracy of blind-hole method. Numerical results indicate that the accuracy of estimated residual stress can be improved significantly by employing the proposed blind-hole parameters.
ISSN:1687-8140