Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond

In this article we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we study a Volterra integral equation of the second kind that describes the shape transformation of propagating stress waves in the paraxial approximation of the underlying wave-equation. E...

Full description

Bibliographic Details
Main Authors: O. Melchert, M. Wollweber, B. Roth
Format: Article
Language:English
Published: Elsevier 2019-03-01
Series:Photoacoustics
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597918300053
id doaj-346a7a14ce5d4f19b8bc7448a7e1b665
record_format Article
spelling doaj-346a7a14ce5d4f19b8bc7448a7e1b6652020-11-25T02:16:46ZengElsevierPhotoacoustics2213-59792019-03-011315Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyondO. Melchert0M. Wollweber1B. Roth2Corresponding author.; Hannover Centre for Optical Technologies (HOT), Interdisciplinary Research Centre of the Leibniz Universität Hannover, Nienburger Str. 17, D-30167 Hannover, GermanyHannover Centre for Optical Technologies (HOT), Interdisciplinary Research Centre of the Leibniz Universität Hannover, Nienburger Str. 17, D-30167 Hannover, GermanyHannover Centre for Optical Technologies (HOT), Interdisciplinary Research Centre of the Leibniz Universität Hannover, Nienburger Str. 17, D-30167 Hannover, GermanyIn this article we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we study a Volterra integral equation of the second kind that describes the shape transformation of propagating stress waves in the paraxial approximation of the underlying wave-equation. Expanding the optoacoustic convolution kernel in terms of a Fourier-series, a best fit to a pair of observed near-field and far-field signals allows to obtain a sequence of expansion coefficients that describe a given “apparative” setup. The resulting effective kernel is used to solve the optoacoustic source reconstruction problem using a Picard-Lindelöf correction scheme. We verify the validity of the proposed inversion protocol for synthetic input signals and explore the feasibility of our approach to also account for the shape transformation of signals beyond the paraxial approximation including the inversion of experimental data stemming from measurements on melanin doped PVA hydrogel tissue phantoms. Keywords: Optoacoustics, Volterra integral equation of the second kind, Convolution kernel reconstruction, Tissue phantomhttp://www.sciencedirect.com/science/article/pii/S2213597918300053
collection DOAJ
language English
format Article
sources DOAJ
author O. Melchert
M. Wollweber
B. Roth
spellingShingle O. Melchert
M. Wollweber
B. Roth
Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
Photoacoustics
author_facet O. Melchert
M. Wollweber
B. Roth
author_sort O. Melchert
title Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
title_short Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
title_full Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
title_fullStr Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
title_full_unstemmed Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
title_sort optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
publisher Elsevier
series Photoacoustics
issn 2213-5979
publishDate 2019-03-01
description In this article we address the numeric inversion of optoacoustic signals to initial stress profiles. Therefore we study a Volterra integral equation of the second kind that describes the shape transformation of propagating stress waves in the paraxial approximation of the underlying wave-equation. Expanding the optoacoustic convolution kernel in terms of a Fourier-series, a best fit to a pair of observed near-field and far-field signals allows to obtain a sequence of expansion coefficients that describe a given “apparative” setup. The resulting effective kernel is used to solve the optoacoustic source reconstruction problem using a Picard-Lindelöf correction scheme. We verify the validity of the proposed inversion protocol for synthetic input signals and explore the feasibility of our approach to also account for the shape transformation of signals beyond the paraxial approximation including the inversion of experimental data stemming from measurements on melanin doped PVA hydrogel tissue phantoms. Keywords: Optoacoustics, Volterra integral equation of the second kind, Convolution kernel reconstruction, Tissue phantom
url http://www.sciencedirect.com/science/article/pii/S2213597918300053
work_keys_str_mv AT omelchert optoacousticinversionviaconvolutionkernelreconstructionintheparaxialapproximationandbeyond
AT mwollweber optoacousticinversionviaconvolutionkernelreconstructionintheparaxialapproximationandbeyond
AT broth optoacousticinversionviaconvolutionkernelreconstructionintheparaxialapproximationandbeyond
_version_ 1724889194556293120