Numerical Analysis of Q-Switched Erbium Ion Doped Fluoride Glass Fiber Laser Operation Including Spontaneous Emission
Partial differential equations are solved to perform a spatiotemporal analysis of Q-switched operation of a fluoride fiber laser doped with erbium ions. A method of lines is applied in order to reduce the partial differential equations to a set of ordinary differential equations. The latter set is t...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-05-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | http://www.mdpi.com/2076-3417/8/5/803 |
Summary: | Partial differential equations are solved to perform a spatiotemporal analysis of Q-switched operation of a fluoride fiber laser doped with erbium ions. A method of lines is applied in order to reduce the partial differential equations to a set of ordinary differential equations. The latter set is then solved using an algorithm designed for a solution of stiff equation problems. A spontaneous emission term is added to equations that model the dynamics of the photon population within the laser cavity for the infrared signal wave. The results show that, without an inclusion of the spontaneous emission term, the correct behavior of the photon population and energy level populations cannot be reproduced. |
---|---|
ISSN: | 2076-3417 |