Summary: | <p>Abstract</p> <p>Maps are increasingly used to visualize and analyze data, yet the spatial ramifications of data structure are rarely considered. Data are subject to transformations made throughout the research process and then used to map, visualize and conduct spatial analysis. We used mortality data to answer three research questions: Are there spatial patterns to mortality, are these patterns statistically significant, and are they persistent across time? This paper provides differential spatial patterns by implementing six data transformations: standardization, cut-points, class size, color scheme, spatial significance and temporal mapping. We use numerous maps and graphics to illustrate the iterative nature of mortality mapping, and exploit the visual nature of the International Journal of Health Geographics journal on the World Wide Web to present researchers with a series of maps.</p>
|