Asymmetric Thermally Activated Delayed Fluorescence Materials With Aggregation-Induced Emission for High-Efficiency Organic Light-Emitting Diodes

The exploitation of thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission is highly prerequisite for the construction of highly efficient electroluminescent devices in materials science. Herein, two asymmetric TADF emitters of SFCOCz and SFCODPAC with charming ag...

Full description

Bibliographic Details
Main Authors: Huanhuan Li, Yibin Zhi, Yizhong Dai, Yunbo Jiang, Qingqing Yang, Mingguang Li, Ping Li, Ye Tao, Hui Li, Wei Huang, Runfeng Chen
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-02-01
Series:Frontiers in Chemistry
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fchem.2020.00049/full
Description
Summary:The exploitation of thermally activated delayed fluorescence (TADF) emitters with aggregation-induced emission is highly prerequisite for the construction of highly efficient electroluminescent devices in materials science. Herein, two asymmetric TADF emitters of SFCOCz and SFCODPAC with charming aggregation-induced emission are expediently designed and prepared based on highly twisted strong electron-withdrawing acceptor (A) of sulfurafluorene (SF)-modified ketone (CO) and arylamine donor (D) in D1−A–D2 architecture by simple synthetic procedure in high yields. High photoluminescence quantum yields up to 73% and small singlet–triplet splitting of 0.03 eV; short exciton lifetimes are obtained in the resultant molecules. Strikingly, efficient non-doped and doped TADF organic light-emitting diodes (OLEDs) facilitated by these emitters show high luminance of 5,598 and 11,595 cd m−2, current efficiencies (CEs) of 16.8 and 35.6 cd/A, power efficiencies (PEs) of 9.1 and 29.8 lm/W, and external quantum efficiencies (EQEs) of 7.5 and 15.9%, respectively. This work furnishes a concrete instance in exploring efficient TADF emitter, which is highly conducive and encouraging in stimulating the development of TADF OLEDs with high brightness and excellent efficiencies simultaneously.
ISSN:2296-2646