A K-Band RF-MEMS-Enabled Reconfigurable and Multifunctional Low-Noise Amplifier Hybrid Circuit

A K-band (18–26.5 GHz) RF-MEMS-enabled reconfigurable and multifunctional dual-path LNA hybrid circuit (optimised for lowest/highest possible noise figure/linearity, resp.) is presented, together with its subcircuit parts. The two MEMS-switched low-NF (higher gain) and high-linearity (lower gain) LN...

Full description

Bibliographic Details
Main Authors: R. Malmqvist, C. Samuelsson, A. Gustafsson, P. Rantakari, S. Reyaz, T. Vähä-Heikkilä, A. Rydberg, J. Varis, D. Smith, R. Baggen
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:Active and Passive Electronic Components
Online Access:http://dx.doi.org/10.1155/2011/284767
Description
Summary:A K-band (18–26.5 GHz) RF-MEMS-enabled reconfigurable and multifunctional dual-path LNA hybrid circuit (optimised for lowest/highest possible noise figure/linearity, resp.) is presented, together with its subcircuit parts. The two MEMS-switched low-NF (higher gain) and high-linearity (lower gain) LNA circuits (paths) present 16.0 dB/8.2 dB, 2.8 dB/4.9 dB and 15 dBm/20 dBm of small-signal gain, noise figure, and 1 dB compression point at 24 GHz, respectively. Compared with the two (fixed) LNA subcircuits used within this design, the MEMS-switched LNA circuit functions show minimum 0.6–1.3 dB higher NF together with similar values of P1 dB at 18–25 GHz. The gain of one LNA circuit path is reduced by 25–30 dB when the MEMS switch and active circuitry used within in the same switching branch are switched off to select the other LNA path and minimise power consumption.
ISSN:0882-7516
1563-5031