Summary: | Coherence properties of projectiles, found relevant in ion-atom collisions, are investigated by analyzing the influence of the degree of coherence of the atomic beam on interference patterns produced by grazing-incidence fast-atom diffraction (GIFAD or FAD). The transverse coherence length of the projectiles, which depends on the incidence conditions and the collimating setup, determines the overall characteristics of GIFAD distributions. We show that for atoms scattered from a LiF(001) surface after a given collimation, we can modify the interference signatures of the angular spectra by varying the total impact energy, while keeping the normal energy as a constant. Also, the role played by the geometry of the collimating aperture is analyzed, comparing results for square and circular openings. Furthermore, we study the spot-beam effect, which is due to different focus points of the impinging particles. We show that when a region narrower than a single crystallographic channel is coherently illuminated by the atomic beam, the spot-beam contribution strongly affects the visibility of the interference structures, contributing to the gradual quantum-classical transition of the projectile distributions.
|