A Review of GPS Trajectories Classification Based on Transportation Mode
GPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relatin...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/18/11/3741 |
id |
doaj-34364e720d8346fba1fc692dd0d2560b |
---|---|
record_format |
Article |
spelling |
doaj-34364e720d8346fba1fc692dd0d2560b2020-11-24T21:41:37ZengMDPI AGSensors1424-82202018-11-011811374110.3390/s18113741s18113741A Review of GPS Trajectories Classification Based on Transportation ModeXue Yang0Kathleen Stewart1Luliang Tang2Zhong Xie3Qingquan Li4Faculty of Information Engineering, China University of Geosciences, Wuhan 430074, ChinaDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAState Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, ChinaFaculty of Information Engineering, China University of Geosciences, Wuhan 430074, ChinaCollege of Civil Engineering, Shenzhen University, Shenzhen 518060, ChinaGPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relating to how to obtain GPS data (e.g., GPS data acquisition, GPS data processing) is receiving significant attention because of the availability of GPS data collecting platforms. One such problem is the GPS data classification based on transportation mode. The challenge of classifying trajectories by transportation mode has approached detecting different modes of movement through the application of several strategies. From a GPS data acquisition point of view, this paper macroscopically classifies the transportation mode of GPS data into single-mode and mixed-mode. That means GPS trajectories collected based on one type of transportation mode are regarded as single-mode data; otherwise it is considered as mixed-mode data. The one big difference of classification strategy between single-mode and mixed-mode GPS data is whether we need to recognize the transition points or activity episodes first. Based on this, we systematically review existing classification methods for single-mode and mixed-mode GPS data and introduce the contributions of these methods as well as discuss their unresolved issues to provide directions for future studies in this field. Based on this review and the transportation application at hand, researchers can select the most appropriate method and endeavor to improve them.https://www.mdpi.com/1424-8220/18/11/3741GPS datatrajectory generationmovement parameterstransportation mode |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xue Yang Kathleen Stewart Luliang Tang Zhong Xie Qingquan Li |
spellingShingle |
Xue Yang Kathleen Stewart Luliang Tang Zhong Xie Qingquan Li A Review of GPS Trajectories Classification Based on Transportation Mode Sensors GPS data trajectory generation movement parameters transportation mode |
author_facet |
Xue Yang Kathleen Stewart Luliang Tang Zhong Xie Qingquan Li |
author_sort |
Xue Yang |
title |
A Review of GPS Trajectories Classification Based on Transportation Mode |
title_short |
A Review of GPS Trajectories Classification Based on Transportation Mode |
title_full |
A Review of GPS Trajectories Classification Based on Transportation Mode |
title_fullStr |
A Review of GPS Trajectories Classification Based on Transportation Mode |
title_full_unstemmed |
A Review of GPS Trajectories Classification Based on Transportation Mode |
title_sort |
review of gps trajectories classification based on transportation mode |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2018-11-01 |
description |
GPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relating to how to obtain GPS data (e.g., GPS data acquisition, GPS data processing) is receiving significant attention because of the availability of GPS data collecting platforms. One such problem is the GPS data classification based on transportation mode. The challenge of classifying trajectories by transportation mode has approached detecting different modes of movement through the application of several strategies. From a GPS data acquisition point of view, this paper macroscopically classifies the transportation mode of GPS data into single-mode and mixed-mode. That means GPS trajectories collected based on one type of transportation mode are regarded as single-mode data; otherwise it is considered as mixed-mode data. The one big difference of classification strategy between single-mode and mixed-mode GPS data is whether we need to recognize the transition points or activity episodes first. Based on this, we systematically review existing classification methods for single-mode and mixed-mode GPS data and introduce the contributions of these methods as well as discuss their unresolved issues to provide directions for future studies in this field. Based on this review and the transportation application at hand, researchers can select the most appropriate method and endeavor to improve them. |
topic |
GPS data trajectory generation movement parameters transportation mode |
url |
https://www.mdpi.com/1424-8220/18/11/3741 |
work_keys_str_mv |
AT xueyang areviewofgpstrajectoriesclassificationbasedontransportationmode AT kathleenstewart areviewofgpstrajectoriesclassificationbasedontransportationmode AT luliangtang areviewofgpstrajectoriesclassificationbasedontransportationmode AT zhongxie areviewofgpstrajectoriesclassificationbasedontransportationmode AT qingquanli areviewofgpstrajectoriesclassificationbasedontransportationmode AT xueyang reviewofgpstrajectoriesclassificationbasedontransportationmode AT kathleenstewart reviewofgpstrajectoriesclassificationbasedontransportationmode AT luliangtang reviewofgpstrajectoriesclassificationbasedontransportationmode AT zhongxie reviewofgpstrajectoriesclassificationbasedontransportationmode AT qingquanli reviewofgpstrajectoriesclassificationbasedontransportationmode |
_version_ |
1725921029239341056 |