Increased expression of matrix extracellular phosphoglycoprotein (MEPE) in cortical bone of the rat tibia after mechanical loading: identification by oligonucleotide microarray.

Skeletal integrity in humans and animals is maintained by daily mechanical loading. It has been widely accepted that osteocytes function as mechanosensors. Many biochemical signaling molecules are involved in the response of osteocytes to mechanical stimulation. The aim of this study was to identify...

Full description

Bibliographic Details
Main Authors: Christianne M A Reijnders, Huib W van Essen, Birgitte T T M van Rens, Johannes H G M van Beek, Bauke Ylstra, Marinus A Blankenstein, Paul Lips, Nathalie Bravenboer
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24255709/pdf/?tool=EBI
Description
Summary:Skeletal integrity in humans and animals is maintained by daily mechanical loading. It has been widely accepted that osteocytes function as mechanosensors. Many biochemical signaling molecules are involved in the response of osteocytes to mechanical stimulation. The aim of this study was to identify genes involved in the translation of mechanical stimuli into bone formation. The four-point bending model was used to induce a single period of mechanical loading on the right tibia, while the contra lateral left tibia served as control. Six hours after loading, the effects of mechanical loading on gene-expression were determined with microarray analysis. Protein expression of differentially regulated genes was evaluated with immunohistochemistry. Nine genes were found to exhibit a significant differential gene expression in LOAD compared to control. MEPE, Garnl1, V2R2B, and QFG-TN1 olfactory receptor were up-regulated, and creatine kinase (muscle form), fibrinogen-B beta-polypeptide, monoamine oxidase A, troponin-C and kinesin light chain-C were down-regulated. Validation with real-time RT-PCR analysis confirmed the up-regulation of MEPE and the down-regulation of creatine kinase (muscle form) and troponin-C in the loaded tibia. Immunohistochemistry showed that the increase of MEPE protein expression was already detectable six hours after mechanical loading. In conclusion, these genes probably play a role during translation of mechanical stimuli six hours after mechanical loading. The modulation of MEPE expression may indicate a connection between bone mineralization and bone formation after mechanical stimulation.
ISSN:1932-6203