Synergistic Antimycobacterial Actions of Knowltonia vesicatoria (L.f) Sims

Euclea natalensis A.DC., Knowltonia vesicatoria (L.f) Sims, and Pelargonium sidoides DC. are South African plants traditionally used to treat tuberculosis. Extracts from these plants were used in combination with isoniazid (INH) to investigate the possibility of synergy with respect to antimycobacte...

Full description

Bibliographic Details
Main Authors: Antoinette Labuschagné, Ahmed A. Hussein, Benjamín Rodríguez, Namrita Lall
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2012/808979
Description
Summary:Euclea natalensis A.DC., Knowltonia vesicatoria (L.f) Sims, and Pelargonium sidoides DC. are South African plants traditionally used to treat tuberculosis. Extracts from these plants were used in combination with isoniazid (INH) to investigate the possibility of synergy with respect to antimycobacterial activity. The ethanol extract of K. vesicatoria was subjected to fractionation to identify the active compounds. The activity of the Knowltonia extract remained superior to the fractions with a minimum inhibitory concentration (MIC) of 625.0 μg/mL against Mycobacterium smegmatis and an MIC of 50.00 μg/mL against M. tuberculosis. The K. vesicatoria extract was tested against two different drug-resistant strains of M. tuberculosis, which resulted in an MIC of 50.00 μg/mL on both strains. The combination of K. vesicatoria with INH exhibited the best synergistic antimycobacterial activity with a fractional inhibitory concentration index of 0.25 (a combined concentration of 6.28 μg/mL). A fifty percent inhibitory concentration of this combination against U937 cells was 121.0 μg/mL. Two compounds, stigmasta-5,23-dien-3-ol (1) and 5-(hydroxymethyl)furan-2(5H)-one (2), were isolated from K. vesicatoria as the first report of isolation for both compounds from this plant and the first report of antimycobacterial activity. Compound (1) was active against drug-sensitive M. tuberculosis with an MIC of 50.00 μg/mL.
ISSN:1741-427X
1741-4288