Summary: | Dimensionality reduction is one of the central problems in machine learning and pattern recognition, which aims to develop a compact representation for complex data from high-dimensional observations. Here, we apply a nonlinear manifold learning algorithm, called local tangent space alignment (LTSA) algorithm, to high-dimensional acoustic observations and achieve nonlinear dimensionality reduction for the acoustic field measured by a linear senor array. By dimensionality reduction, the underlying physical degrees of freedom of acoustic field, such as the variations of sound source location and sound speed profiles, can be discovered. Two simulations are presented to verify the validity of the approach.
|