Summary: | This paper proposes a game-theory based approach in a multi–target searching using a multi-robot system in a dynamic environment. It is assumed that a rough priori probability map of the targets' distribution within the environment is given. To consider the interaction between the robots, a dynamic-programming equation is proposed to estimate the utility function for each robot. Based on this utility function, a cooperative nonzero-sum game is generated, where both pure Nash Equilibrium and mixed-strategy Equilibrium solutions are presented to achieve an optimal overall robot behaviors. A special consideration has been taken to improve the real-time performance of the game-theory based approach. Several mechanisms, such as event-driven discretization, one-step dynamic programming, and decision buffer, have been proposed to reduce the computational complexity. The main advantage of the algorithm lies in its real-time capabilities whilst being efficient and robust to dynamic environments.
|