Summary: | The western Makran coast displays evidence of surface uplift since at least the Late Pleistocene, but it remains uncertain whether this displacement is accommodated by creep on the subduction interface, or in a series of large earthquakes. Here, we address this problem by looking at the short-term (Holocene) history of continental vertical displacements recorded in the geomorphology and sedimentary succession of the Makran beaches. In the region of Chabahar (Southern Iran), we study two bay-beaches through the description, measurement and dating of 13 sedimentary sections with a combination of radiocarbon and Optically Stimulated Luminescence (OSL) dating. Our results show that lagoonal settings dominate the early Holocene of both studied beach sections. A flooding surface associated with the Holocene maximum transgression is followed by a prograding sequence of tidal and beach deposits. Coastal progradation is evidenced in Pozm Bay, where we observe a rapid buildup of the beach ridge succession (3.5 m/years lateral propagation over the last 1950 years). Dating of Beris Beach revealed high rates of uplift, comparable to the rates obtained from the nearby Late Pleistocene marine terraces. A 3150-year-old flooding surface within the sedimentary succession of Chabahar Bay was possibly caused by rapid subsidence during an earthquake. If true, this might indicate that the Western Makran does produce large earthquakes, similar to those that have occurred further east in the Pakistani Makran.
|