Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement

The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in...

Full description

Bibliographic Details
Main Authors: Daniel Teso-Fz-Betoño, Ekaitz Zulueta, Unai Fernandez-Gamiz, Aitor Saenz-Aguirre, Raquel Martinez
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Electronics
Subjects:
DWA
MPC
Online Access:https://www.mdpi.com/2079-9292/8/9/935
id doaj-33c063231419446491bf698bfc44c66d
record_format Article
spelling doaj-33c063231419446491bf698bfc44c66d2020-11-24T20:42:49ZengMDPI AGElectronics2079-92922019-08-018993510.3390/electronics8090935electronics8090935Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference ImprovementDaniel Teso-Fz-Betoño0Ekaitz Zulueta1Unai Fernandez-Gamiz2Aitor Saenz-Aguirre3Raquel Martinez4System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainDepartment of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainThe aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters&#8217; values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#945;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#946;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#947;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula> parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution.https://www.mdpi.com/2079-9292/8/9/935DWAANFISmotion planningmobile robotsobstacle avoidancefuzzy logicMPC
collection DOAJ
language English
format Article
sources DOAJ
author Daniel Teso-Fz-Betoño
Ekaitz Zulueta
Unai Fernandez-Gamiz
Aitor Saenz-Aguirre
Raquel Martinez
spellingShingle Daniel Teso-Fz-Betoño
Ekaitz Zulueta
Unai Fernandez-Gamiz
Aitor Saenz-Aguirre
Raquel Martinez
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
Electronics
DWA
ANFIS
motion planning
mobile robots
obstacle avoidance
fuzzy logic
MPC
author_facet Daniel Teso-Fz-Betoño
Ekaitz Zulueta
Unai Fernandez-Gamiz
Aitor Saenz-Aguirre
Raquel Martinez
author_sort Daniel Teso-Fz-Betoño
title Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
title_short Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
title_full Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
title_fullStr Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
title_full_unstemmed Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
title_sort predictive dynamic window approach development with artificial neural fuzzy inference improvement
publisher MDPI AG
series Electronics
issn 2079-9292
publishDate 2019-08-01
description The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters&#8217; values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#945;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#946;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">&#947;</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula> parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution.
topic DWA
ANFIS
motion planning
mobile robots
obstacle avoidance
fuzzy logic
MPC
url https://www.mdpi.com/2079-9292/8/9/935
work_keys_str_mv AT danieltesofzbetono predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement
AT ekaitzzulueta predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement
AT unaifernandezgamiz predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement
AT aitorsaenzaguirre predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement
AT raquelmartinez predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement
_version_ 1716821635100573696