Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement
The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Electronics |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-9292/8/9/935 |
id |
doaj-33c063231419446491bf698bfc44c66d |
---|---|
record_format |
Article |
spelling |
doaj-33c063231419446491bf698bfc44c66d2020-11-24T20:42:49ZengMDPI AGElectronics2079-92922019-08-018993510.3390/electronics8090935electronics8090935Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference ImprovementDaniel Teso-Fz-Betoño0Ekaitz Zulueta1Unai Fernandez-Gamiz2Aitor Saenz-Aguirre3Raquel Martinez4System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainDepartment of Nuclear and Fluid Mechanics, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainSystem Engineering and Automation Control Department, University of the Basque Country (UPV/EHU), Nieves Cano, 12, 01006 Vitoria-Gasteiz, SpainThe aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters’ values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">β</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">γ</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula> parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution.https://www.mdpi.com/2079-9292/8/9/935DWAANFISmotion planningmobile robotsobstacle avoidancefuzzy logicMPC |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Daniel Teso-Fz-Betoño Ekaitz Zulueta Unai Fernandez-Gamiz Aitor Saenz-Aguirre Raquel Martinez |
spellingShingle |
Daniel Teso-Fz-Betoño Ekaitz Zulueta Unai Fernandez-Gamiz Aitor Saenz-Aguirre Raquel Martinez Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement Electronics DWA ANFIS motion planning mobile robots obstacle avoidance fuzzy logic MPC |
author_facet |
Daniel Teso-Fz-Betoño Ekaitz Zulueta Unai Fernandez-Gamiz Aitor Saenz-Aguirre Raquel Martinez |
author_sort |
Daniel Teso-Fz-Betoño |
title |
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement |
title_short |
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement |
title_full |
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement |
title_fullStr |
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement |
title_full_unstemmed |
Predictive Dynamic Window Approach Development with Artificial Neural Fuzzy Inference Improvement |
title_sort |
predictive dynamic window approach development with artificial neural fuzzy inference improvement |
publisher |
MDPI AG |
series |
Electronics |
issn |
2079-9292 |
publishDate |
2019-08-01 |
description |
The aim of this paper is to improve the dynamic window approach algorithm for mobile robots by implementing a prediction window with a fuzzy inference system to adapt to fixed parameters, depending on the surrounding conditions. The first implementation shows the advantage of the prediction step in terms of optimizing the path selection. The second improvement uses fuzzy inference to optimize each of the fixed parameters’ values to increase the algorithm performance. Nevertheless, a simple fuzzy inference system (FIS) was not used for this particular study; instead, an artificial neuro-fuzzy inference system (ANFIS) was used, thus making it possible to develop a FIS system with a back-propagation technique. Each parameter would have a particular ANFIS, in order to modify the <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">α</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">β</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">γ</mi> <mi mathvariant="normal">D</mi> </msub> </mrow> </semantics> </math> </inline-formula> parameters individually. At the end of the article, different scenarios are analyzed to determine whether the developments in this article have improved the DWA behavior. The results show that the prediction step and ANFIS adapt DWA performance by optimizing the path resolution. |
topic |
DWA ANFIS motion planning mobile robots obstacle avoidance fuzzy logic MPC |
url |
https://www.mdpi.com/2079-9292/8/9/935 |
work_keys_str_mv |
AT danieltesofzbetono predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement AT ekaitzzulueta predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement AT unaifernandezgamiz predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement AT aitorsaenzaguirre predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement AT raquelmartinez predictivedynamicwindowapproachdevelopmentwithartificialneuralfuzzyinferenceimprovement |
_version_ |
1716821635100573696 |