Fear Recognition for Women Using a Reduced Set of Physiological Signals
Emotion recognition is benefitting from the latest research into physiological monitoring and wireless communications, among other remarkable achievements. These technologies can indeed provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of children or th...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/5/1587 |
id |
doaj-33b183e526974220b14a09d57f2a7182 |
---|---|
record_format |
Article |
spelling |
doaj-33b183e526974220b14a09d57f2a71822021-02-26T00:01:13ZengMDPI AGSensors1424-82202021-02-01211587158710.3390/s21051587Fear Recognition for Women Using a Reduced Set of Physiological SignalsJose A. Miranda0Manuel F. Canabal1Laura Gutiérrez-Martín2Jose M. Lanza-Gutierrez3Marta Portela-García4Celia López-Ongil5Electronic Technology Department, Universidad Carlos III of Madrid, 28911 Leganés, Madrid, SpainElectronic Technology Department, Universidad Carlos III of Madrid, 28911 Leganés, Madrid, SpainElectronic Technology Department, Universidad Carlos III of Madrid, 28911 Leganés, Madrid, SpainDepartment of Computer Science, University of Alcalá, 28871 Alcalá de Henares, Madrid, SpainElectronic Technology Department, Universidad Carlos III of Madrid, 28911 Leganés, Madrid, SpainElectronic Technology Department, Universidad Carlos III of Madrid, 28911 Leganés, Madrid, SpainEmotion recognition is benefitting from the latest research into physiological monitoring and wireless communications, among other remarkable achievements. These technologies can indeed provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of children or the elderly, gender violence or sexual aggression. Cyberphysical systems using smart sensors, artificial intelligence and wearable and inconspicuous devices can serve as bodyguards to detect these risky situations (through fear-related emotion detection) and automatically trigger a protection protocol. As expected, these systems should be trained and customized for each user to ensure the best possible performance, which undoubtedly requires a gender perspective. This paper presents a specialized fear recognition system for women based on a reduced set of physiological signals. The architecture proposed is characterized by the usage of three physiological sensors, lightweight binary classification and the conjunction of linear (temporal and frequency) and non-linear features. Moreover, a binary fear mapping strategy between dimensional and discrete emotional information based on emotional self-report data is implemented to avoid emotional bias. The architecture is evaluated using a public multi-modal physiological dataset with two approaches (subject-dependent and subject-independent models) focusing on the female participants. As a result, the proposal outperforms the state-of-the-art in fear recognition, achieving a recognition rate of up to 96.33% for the subject-dependent model.https://www.mdpi.com/1424-8220/21/5/1587fear recognitionphysiological signalssignal processingwearable sensors |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jose A. Miranda Manuel F. Canabal Laura Gutiérrez-Martín Jose M. Lanza-Gutierrez Marta Portela-García Celia López-Ongil |
spellingShingle |
Jose A. Miranda Manuel F. Canabal Laura Gutiérrez-Martín Jose M. Lanza-Gutierrez Marta Portela-García Celia López-Ongil Fear Recognition for Women Using a Reduced Set of Physiological Signals Sensors fear recognition physiological signals signal processing wearable sensors |
author_facet |
Jose A. Miranda Manuel F. Canabal Laura Gutiérrez-Martín Jose M. Lanza-Gutierrez Marta Portela-García Celia López-Ongil |
author_sort |
Jose A. Miranda |
title |
Fear Recognition for Women Using a Reduced Set of Physiological Signals |
title_short |
Fear Recognition for Women Using a Reduced Set of Physiological Signals |
title_full |
Fear Recognition for Women Using a Reduced Set of Physiological Signals |
title_fullStr |
Fear Recognition for Women Using a Reduced Set of Physiological Signals |
title_full_unstemmed |
Fear Recognition for Women Using a Reduced Set of Physiological Signals |
title_sort |
fear recognition for women using a reduced set of physiological signals |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-02-01 |
description |
Emotion recognition is benefitting from the latest research into physiological monitoring and wireless communications, among other remarkable achievements. These technologies can indeed provide solutions to protect vulnerable people in scenarios such as personal assaults, the abuse of children or the elderly, gender violence or sexual aggression. Cyberphysical systems using smart sensors, artificial intelligence and wearable and inconspicuous devices can serve as bodyguards to detect these risky situations (through fear-related emotion detection) and automatically trigger a protection protocol. As expected, these systems should be trained and customized for each user to ensure the best possible performance, which undoubtedly requires a gender perspective. This paper presents a specialized fear recognition system for women based on a reduced set of physiological signals. The architecture proposed is characterized by the usage of three physiological sensors, lightweight binary classification and the conjunction of linear (temporal and frequency) and non-linear features. Moreover, a binary fear mapping strategy between dimensional and discrete emotional information based on emotional self-report data is implemented to avoid emotional bias. The architecture is evaluated using a public multi-modal physiological dataset with two approaches (subject-dependent and subject-independent models) focusing on the female participants. As a result, the proposal outperforms the state-of-the-art in fear recognition, achieving a recognition rate of up to 96.33% for the subject-dependent model. |
topic |
fear recognition physiological signals signal processing wearable sensors |
url |
https://www.mdpi.com/1424-8220/21/5/1587 |
work_keys_str_mv |
AT joseamiranda fearrecognitionforwomenusingareducedsetofphysiologicalsignals AT manuelfcanabal fearrecognitionforwomenusingareducedsetofphysiologicalsignals AT lauragutierrezmartin fearrecognitionforwomenusingareducedsetofphysiologicalsignals AT josemlanzagutierrez fearrecognitionforwomenusingareducedsetofphysiologicalsignals AT martaportelagarcia fearrecognitionforwomenusingareducedsetofphysiologicalsignals AT celialopezongil fearrecognitionforwomenusingareducedsetofphysiologicalsignals |
_version_ |
1724250468193927168 |