A Hopeful Sea-Monster: A Very Large Homologous Recombination Event Impacting the Core Genome of the Marine Pathogen Vibrio anguillarum

Vibrio anguillarum is the causative agent of vibriosis in many species important to aquaculture. We generated whole genome sequence (WGS) data on a diverse collection of 64 V. anguillarum strains, which we supplemented with 41 publicly available genomes to produce a combined dataset of 105 strains....

Full description

Bibliographic Details
Main Authors: Nicola M. Coyle, Kerry L. Bartie, Sion C. Bayliss, Michaël Bekaert, Alexandra Adams, Stuart McMillan, David W. Verner-Jeffreys, Andrew P. Desbois, Edward J. Feil
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-06-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmicb.2020.01430/full
Description
Summary:Vibrio anguillarum is the causative agent of vibriosis in many species important to aquaculture. We generated whole genome sequence (WGS) data on a diverse collection of 64 V. anguillarum strains, which we supplemented with 41 publicly available genomes to produce a combined dataset of 105 strains. These WGS data resolved six major lineages (L1-L6), and the additional use of multilocus sequence analysis (MLSA) clarified the association of L1 with serotype O1 and Salmonidae hosts (salmon/trout), and L2 with serotypes O2a/O2b/O2c and Gadidae hosts (cod). Our analysis also revealed a large-scale homologous replacement of 526-kb of core genome in an L2 strain from a con-specific donor. Although the strains affected by this recombination event are exclusively associated with Gadidae, we find no clear genetic evidence that it has played a causal role in host specialism. Whilst it is established that Vibrio species freely recombine, to our knowledge this is the first report of a contiguous recombinational replacement of this magnitude in any Vibrio genome. We also note a smaller accessory region of high single nucleotide polymorphism (SNP) density and gene content variation that contains lipopolysaccharide biosynthesis genes which may play a role in determining serotype.
ISSN:1664-302X