Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis.
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvas...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4086955?pdf=render |
id |
doaj-337958229cf14b40b0911c6afc15223a |
---|---|
record_format |
Article |
spelling |
doaj-337958229cf14b40b0911c6afc15223a2020-11-25T01:09:29ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0197e10169310.1371/journal.pone.0101693Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis.Masako YokotaYukiho KobayashiJumpei MoritaHiroyuki SuzukiYoshihide HashimotoYoshihiro SasakiKazunari AkiyoshiKeiji MoriyamaApert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.http://europepmc.org/articles/PMC4086955?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Masako Yokota Yukiho Kobayashi Jumpei Morita Hiroyuki Suzuki Yoshihide Hashimoto Yoshihiro Sasaki Kazunari Akiyoshi Keiji Moriyama |
spellingShingle |
Masako Yokota Yukiho Kobayashi Jumpei Morita Hiroyuki Suzuki Yoshihide Hashimoto Yoshihiro Sasaki Kazunari Akiyoshi Keiji Moriyama Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. PLoS ONE |
author_facet |
Masako Yokota Yukiho Kobayashi Jumpei Morita Hiroyuki Suzuki Yoshihide Hashimoto Yoshihiro Sasaki Kazunari Akiyoshi Keiji Moriyama |
author_sort |
Masako Yokota |
title |
Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. |
title_short |
Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. |
title_full |
Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. |
title_fullStr |
Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. |
title_full_unstemmed |
Therapeutic effect of nanogel-based delivery of soluble FGFR2 with S252W mutation on craniosynostosis. |
title_sort |
therapeutic effect of nanogel-based delivery of soluble fgfr2 with s252w mutation on craniosynostosis. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder. |
url |
http://europepmc.org/articles/PMC4086955?pdf=render |
work_keys_str_mv |
AT masakoyokota therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT yukihokobayashi therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT jumpeimorita therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT hiroyukisuzuki therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT yoshihidehashimoto therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT yoshihirosasaki therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT kazunariakiyoshi therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis AT keijimoriyama therapeuticeffectofnanogelbaseddeliveryofsolublefgfr2withs252wmutationoncraniosynostosis |
_version_ |
1725178469431640064 |