The fundamental group and Galois coverings of hexagonal systems in 3-space

We consider hexagonal systems embedded into the 3-dimensional space ℝ3. We define the fundamental group π1(G) of such a system G and show that in case G is a finite hexagonal system with boundary, then π1(G) is a (non-Abelian) free group. In this case, the rank of π1(G) equals m(G)−h(G)−n(G)+1, wher...

Full description

Bibliographic Details
Main Authors: J. A. De La Peña, L. Mendoza
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/47381
id doaj-336fdb77450745f9975b3417798a1887
record_format Article
spelling doaj-336fdb77450745f9975b3417798a18872020-11-24T23:55:12ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252006-01-01200610.1155/IJMMS/2006/4738147381The fundamental group and Galois coverings of hexagonal systems in 3-spaceJ. A. De La Peña0L. Mendoza1Instituto de Matemáticas, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, México 04510 DF, MexicoDepartamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Mérida 5101, VenezuelaWe consider hexagonal systems embedded into the 3-dimensional space ℝ3. We define the fundamental group π1(G) of such a system G and show that in case G is a finite hexagonal system with boundary, then π1(G) is a (non-Abelian) free group. In this case, the rank of π1(G) equals m(G)−h(G)−n(G)+1, where n(G) (resp., m(G), h(G)) denotes the number of vertices (resp., edges, hexagons) in G.http://dx.doi.org/10.1155/IJMMS/2006/47381
collection DOAJ
language English
format Article
sources DOAJ
author J. A. De La Peña
L. Mendoza
spellingShingle J. A. De La Peña
L. Mendoza
The fundamental group and Galois coverings of hexagonal systems in 3-space
International Journal of Mathematics and Mathematical Sciences
author_facet J. A. De La Peña
L. Mendoza
author_sort J. A. De La Peña
title The fundamental group and Galois coverings of hexagonal systems in 3-space
title_short The fundamental group and Galois coverings of hexagonal systems in 3-space
title_full The fundamental group and Galois coverings of hexagonal systems in 3-space
title_fullStr The fundamental group and Galois coverings of hexagonal systems in 3-space
title_full_unstemmed The fundamental group and Galois coverings of hexagonal systems in 3-space
title_sort fundamental group and galois coverings of hexagonal systems in 3-space
publisher Hindawi Limited
series International Journal of Mathematics and Mathematical Sciences
issn 0161-1712
1687-0425
publishDate 2006-01-01
description We consider hexagonal systems embedded into the 3-dimensional space ℝ3. We define the fundamental group π1(G) of such a system G and show that in case G is a finite hexagonal system with boundary, then π1(G) is a (non-Abelian) free group. In this case, the rank of π1(G) equals m(G)−h(G)−n(G)+1, where n(G) (resp., m(G), h(G)) denotes the number of vertices (resp., edges, hexagons) in G.
url http://dx.doi.org/10.1155/IJMMS/2006/47381
work_keys_str_mv AT jadelapena thefundamentalgroupandgaloiscoveringsofhexagonalsystemsin3space
AT lmendoza thefundamentalgroupandgaloiscoveringsofhexagonalsystemsin3space
AT jadelapena fundamentalgroupandgaloiscoveringsofhexagonalsystemsin3space
AT lmendoza fundamentalgroupandgaloiscoveringsofhexagonalsystemsin3space
_version_ 1725463736019320832