The fundamental group and Galois coverings of hexagonal systems in 3-space
We consider hexagonal systems embedded into the 3-dimensional space ℝ3. We define the fundamental group π1(G) of such a system G and show that in case G is a finite hexagonal system with boundary, then π1(G) is a (non-Abelian) free group. In this case, the rank of π1(G) equals m(G)−h(G)−n(G)+1, wher...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/IJMMS/2006/47381 |
Summary: | We consider hexagonal systems embedded into the 3-dimensional space ℝ3. We define the fundamental group π1(G) of such a system G and show that in case G is a finite hexagonal system with boundary, then π1(G) is a (non-Abelian) free group. In this case, the rank of π1(G) equals m(G)−h(G)−n(G)+1, where n(G)
(resp., m(G), h(G)) denotes the number of vertices (resp., edges, hexagons) in G. |
---|---|
ISSN: | 0161-1712 1687-0425 |